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Abstract  
Inferring phylogenies among intraspecific individuals often yields unresolved 
relationships (i.e., polytomies). Consequently, methods that compute distance-based 
abstract networks, like Median-Joining Networks (MJNs), are thought to be more 
appropriate tools for reconstructing such relationships than traditional trees. 
Median-Joining Networks visualize all routes of relationships in the form of cycles, if 
needed, when traditional approaches cannot resolve them. However, the MJN method is 
a distance-based phenetic approach that does not involve character transformations and 
makes no reference to ancestor–descendant relationships. Although philosophical and 
theoretical arguments challenging the implication that MJNs reflect phylogenetic signal 
in the traditional sense have been presented elsewhere, an empirical comparison with a 
character-based approach is needed given the increasing popularity of MJN analysis in 
evolutionary biology. Here, we use the conservative Approximately Unbiased (AU) test 
to compare 85 cases of branching patterns of cycle-free MJNs and Bayesian Inference 
(BI) phylogenies using datasets from 55 empirical studies. By rooting the MJN analyses 
to provide directionality, we report substantial disagreement between computed MJNs 
and posterior distributions on BI phylogenies. The branching patterns in MJNs and BI 
phylogenies show significantly different relationships in 37.6% of cases. Among the 
relationships that do not significantly differ, 96.2% show alternative sets of relationships. 
Our results indicate that the two methods provide different measures of relatedness in 
a phylogenetic sense. Finally, our analyses also support previous observations of the 
statistical hypothesis testing by reconfirming the over-conservativeness of the 
Shimodaira-Hasegawa test versus the AU test. 

1 Introduction   

Phylogenetic inference involves statistical analysis of the 
differences among taxa and then represents their evolu-
tionary relationships in a branch-like structure (Felsen-
stein, 2004). The tree model strictly assumes vertical evolu-
tion where a single ancestral taxon splits into two daughter 
taxa that denotes a speciation event. The resulting diagram 
consisting of a set of bifurcations often sufficiently de-
scribes speciation events but overlook common and im-
portant evolutionary histories that also generate novel lin-
eages, like hybridization, due to structural constraints. The 
ability to infer and illustrate such complex evolutionary 
phenomena is a critical component for the expansion of 
evolutionary research (Blair & Ané, 2019; Kong, 2022). 
The concept of a phylogenetic network has been pro-

posed as an alternative to the tree model. In brief, a phy-

logenetic network extends the tree model by considering 
reticulation events (e.g., hybrid speciation, introgression, 
gene flow, horizontal gene transfer, or recombination) in 
the form of a directed acyclic graph with at least one vertex 
with in-degree two and out-degree one. While Huson & 
Bryant (2005) noted the term network is often described 
in a way that the authors happen to be interested in prac-
tice (e.g., hybridization network (Linder & Rieseberg, 2004) 
or recombination network (Gusfield & Bansal, 2005)), sub-
stantial progress has been made in recent years to establish 
a solid concept of networks (see Kong (2022) for a review of 
the various classes of phylogenetic networks and their bio-
logical significance). 
Networks are largely classified into explicit and abstract 

(or implicit) networks. It is important to stress that the 
former model non-treelike evolution due to the complex 
evolutionary events (hence, they are true phylogenetic net-
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works), whereas the latter depict non-treelike signal in the 
data but do not model biological cause of those signals 
(Degnan, 2018). This is because the abstract networks often 
focus on wheth-er a distance matrix can be fit onto a topol-
ogy in a mathematical sense, regardless of the biological 
mechanism (Bapteste et al., 2013; Debevec & Whitfield, 
2012; Huson et al., 2010; Huson & Scornavacca, 2010). In 
short, no historical ancestor–descendent relationships can 
be inferred on abstract networks because the non-termi-
nal nodes do not represent ancestral taxa (Solís-Lemus & 
Ané, 2016). Many efforts to efficiently infer explicit net-
works have been made (e.g., PhyloNet (Than et al., 2008; 
Wen & Nakhleh, 2017); SNaQ (Solís-Lemus & Ané, 2016); 
PhyNEST (Kong et al., 2022)). However, current inference 
methods require high computational capability, and they 
become very expensive even to infer the relationships 
among two dozens of taxa (Hejase & Liu, 2016). In contrast, 
abstract networks are fast to compute and visualize possi-
ble routes of relationships of the nucleotide arrangements 
in the input sequence alignment (or a set of gene trees) 
based on overall similarity. 
The Median-Joining Network (MJN) is one of the most 

popular methods to compute abstract networks. The 
method clusters sequences on the basis of overall similarity 
(see Kong et al. (2015) for operational details focusing on 
MJN’s phenetic nature), and the lack of a root precludes 
identification of the direction of evolution (Sánchez-
Pacheco et al., 2020). A rooting option is available when 
computing MJNs, but this procedure is often bypassed in 
practice. Moreover, Kong et al. (2015) and Sánchez-Pacheco 
et al. (2020) argue that the rooting procedure in MJ does not 
appropriately polarize the character transformation. The 
cyclic structure in MJNs must be distinguished from the 
reticulation in explicit networks as they merely illustrate 
the algorithm’s inability to discern optimal connections 
(Salzburger et al., 2011). Despite these flaws, the appli-
cation of MJNs is not waning but rather flourishing with 
> 12,000 citations as of writing, probably because of the 
fast computation and freely available, simple to use soft-
ware NETWORK (available on http://www.fluxus-engineer-
ing.com; Bandelt et al., 1999). 
Bayesian inference (BI) is a widely used method to re-

construct phylogenetic trees (Huelsenbeck & Ronquist, 
2001; Yang & Rannala, 1997). Sampling the posterior prob-
ability in BI methods is not trivial, and computational ef-
ficiency is achieved through application of Markov chain 
Monte Carlo (MCMC) that approximates the posterior dis-
tribution of trees (Li et al., 2000; Mau et al., 1999; Mau & 
Newton, 1997; Yang & Rannala, 1997). However, BI phy-
logenies may be unsuitable to infer relationships among 
closely related intraspecific individuals because the pro-
duced tree will have poor resolution as BI samples multiple 
trees that require merging using some consensus criteria 
(Posada & Crandall, 2001). Moreover, setting appropriate 
prior parameters to conduct BI approaches is not always 
straightforward, and the estimated posterior probability 
can be excessively liberal when compared to the bootstrap 
support from a maximum likelihood phylogeny (Suzuki et 
al., 2002). Nevertheless, BI is considered as one of the most 

reliable methods available today for phylogenetic tree re-
construction. 
Branching patterns among a set of phylogenetic trees 

with the same ingroup taxa often differ due to random 
chance, sampling error, model misidentification, and many 
others factors. Techniques for measuring and testing the 
significance of topological incongruence among a set of 
topologies are used widely. For example, the Shimodaira-
Hasegawa (SH) test (Shimodaira & Hasegawa, 1999) is a 
method that uses non-parametric bootstrapping that com-
pares topologies in a likelihood framework. This test can 
compare multiple topologies considering the null hypoth-
esis that all the trees tested are equally good explanations 
of the data, whereas the alternative hypothesis is that one 
or several trees are better representations of the data. Be-
cause the SH test can be very conservative in its rejection 
of the null hypothesis when the number of candidate trees 
is large, the Approximately Unbiased (AU) test (Shimodaira, 
2002; Shimodaira & Hasegawa, 2001) is proposed in an at-
tempt to ameliorate this bias. 
Here, we ask if the branching pattern computed from the 

MJ algorithm is statistically different from that of estimated 
through BI analysis. Because the true relationships are un-
known, we employ the AU test to statistically test for the 
significance of the discrepancies. With a strong assump-
tion that the character-based, philosophically defensible BI 
method always produces a topology that is closer to the 
true relationship (i.e., actual pattern of ancestor–descend-
ant relationships), the statistical differences between the BI 
and MJN topologies rejects the null hypothesis that MJN 
explains the data as good as BI phylogeny, which can be 
interpreted as the relationship depicted in MJN is unlikely 
to be a true evolutionary relationships among the taxa. 
We evaluate the performance of MJN analyses by scoring 
the percentages where two topologies differ significantly. 
Through this study, we aim to show that MJN is not an ap-
propriate tool to estimate phylogenetic relationship, thus 
evolutionary interpretation solely based on MJN can be 
misleading. 

2 Methods   
2.1  Data  collection  

We collected a set of published studies that computed MJNs 
in their analyses. We particularly looked for MJNs with no 
or a few cycles. While star-like MJNs, in which all nodes 
are individually connected to a central connection node 
that usually occur when there is a very small variation be-
tween sequences (i.e., one to a few nucleotide differences), 
were most frequent in the literature, we avoided them as 
they are likely to yield a completely unresolved BI tree 
(pers. obs.) The star-like MJNs often lack phylogenetic in-
formation; however, Bandelt et al. (1995) argue that such 
topologies characterize demographic expansions around a 
founder population, which is represented by the central 
node, in the past. The selected studies were further filtered 
by the availability of GenBank accession numbers for the 
DNA sequences used to compute the MJNs. 
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The outgroup sequences were also retrieved when avail-
able in the original article, although they were not available 
in most cases because MJ does not conduct outgroup root-
ing for its calculation (Kong et al., 2015; Sánchez-Pacheco 
et al., 2020). When the outgroup was not specified, we 
selected outgroup sequences using two strategies: (1) we 
identified outgroup sequences from other studies on the 
same organisms in interest or (2) we manually selected 
them via Basic Local Alignment Search Tool (BLAST) im-
plemented in GENEIOUS R6 version 6.1.8 (available on 
https://www.geneious.com; Kearse et al., 2012). Because 
the ingroup sequences were often from a single (or closely 
related) species that are expected to be very similar with 
each other, outgroup taxa that were excessively closely or 
distantly related were not expected to be very useful in 
reconstructing relationships. We selected multiple taxa 
within the sister group when possible, which produced 
more consistent results than any other outgroup selection 
strategies (Luo et al., 2010), preferably those with low pair-
wise identical sites (i.e., ) and/or with high identical 
site (i.e., ) compared to the ingroup sequences. 
Multiple sequence alignment was performed with MUS-

CLE (Edgar, 2004) implemented in GENEIOUS R6. All align-
ments were performed using default parameters, and they 
were visually inspected and manually corrected whenever 
appropriate. Two sets of alignments, one without outgroup 
(denoted by Alignment 1 hereafter) and another with out-
group (Alignment 2), were saved. 

2.2 Topology inference    

For each Alignment 1, we computed MJN using NETWORK 
version 4.6.1.2 (Bandelt et al., 1999) with the default set-
ting, where a weight applied to each character state (i.e., 
nucleotide) and an explicit parameter  were set to 10 and 
0, respectively. An equal weight was applied to all character 
differences in the alignment to the computation of MJNs, 
although Bandelt et al. (1999) suggest to increase the value 
in case some character states were more informative in 
identifying the clusterings than the others, assuming mu-
tations in conservative sites were more valuable than the 
mutations in hypervariable sites. The explicit parameter 
specified a weighted genetic distance to the sampled se-
quences in the dataset, within which potential median vec-
tors (unsampled hypothetical vectors that linked either 
sampled vectors, median vectors, or both) may have been 
constructed. For example, a greater value of  would have 
resulted in the construction of more median vectors be-
tween haplotypes, thus yielding very complex networks 
(i.e., full median networks) that were often impossible to 
interpret. Because we aimed to remove cycles in the net-
work, we kept  at its lowest setting. The Optional Post-
processing/Maximum Parsimony (MP) calculation imple-
mented in NETWORK (Polzin & Daneshmand, 2003), which 
would have taken all produced median vectors and linkages 
into account, was not conducted (see Kong et al. (2015) 
for arguments against the so-called MP calculation in MJN 
analysis). 
Hereafter, we refer to a set of haplotypes that constitutes 

a cycle in MJN as ‘causative haplotypes.’ Because we were 

Figure 1. A Median Joining Network (MJN) with five 
haplotypes (labeled A–E) and a cycle. Eliminating any of 
the causative haplotypes A, B, or C will result in a network 
free of cycles. Haplotypes D and E are not causative 
haplotypes as their deletion will not remove the cycle. 

interested in comparing the treelike branching patterns, we 
manually eliminated any cycle created by the MJ method 
by arbitrarily selecting and removing one or more causative 
haplotype(s). For example, in the MJN with a cycle shown 
in Figure 1 the elimination of any one of the causative hap-
lotypes A, B, or C resulted in a network free of cycles (as-
suming no median vector replaced the deleted haplotype). 
In contrast, haplotypes D and E were not causative hap-
lotypes because they are not part of the cycle, and their 
removal would not eliminate the cycle. More specifically, 
we removed the sequence(s) that belonged to the selected 
causative haplotype(s) from Alignment 1. With the trun-
cated Alignment 1 that contained a subset of sequences, 
we re-executed the MJ algorithm. This procedure was iter-
atively done until the final network is free of any cycle. We 
made the same deletion of sequences that belong to the se-
lected causative haplotype(s) for Alignment 2, and this was 
termed Alignment 2a. 
Bayesian inference phylogenies were reconstructed for 

Alignment 2a and rooted with an outgroup in the align-
ment. First, we employed MrModelTest version 2.3 (Posada 
& Crandall, 1998) to select the best DNA substitution 
model by the Akaike information criterion (AIC). Next, we 
conducted a single MCMC analysis of  iterations in Mr-
Bayes version 3.2.2 (Huelsenbeck & Ronquist, 2001), each 
of which had four chains (three hot and one cold) with the 
default priors. One tree was saved every  generations. 
The analysis was stopped if the standard deviation of split 
frequencies fell below  after the  generations. If not, 

 generations were added until the value fell below . 
The final 50% majority rule consensus tree was saved. We 
used the 50% majority rule consensus tree as a final product 
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of our Bayesian analysis instead of other alternatives (e.g., 
the maximum clade credibility tree) because the consensus 
tree is very frequently used in practice to summarize a set 
of trees collected from the MCMC tree search, and it can be 
viewed as the optimal tree to report, shown to be more re-
liable than the maximum clade credibility tree with a lower 
proportion of incorrect nodes (Holder et al., 2008; O’Reilly 
& Donoghue, 2017). 
Because the BI phylogenies incorporated information 

about the direction of evolution among the ingroup taxa 
through outgroup comparison, we used this directionality 
to manually convert each cycle-free unrooted MJN into a 
rooted branching topology following Salzburger et al. 
(2011), with minor modifications. We saved the BI tree and 
the rooted and transformed MJN topology in Newick for-
mat. When the root position that provides the same direc-
tionality as in BI phylogeny was not present in MJN, we se-
lected the largest haplotype cluster or the longest edge in 
MJN as a starting point of the evolutionary direction. When 
all haplotype clusters were in equal size, we arbitrarily se-
lected a place that produces two clusters that bifurcate from 
the root where the composition in each cluster is the clos-
est to the two clades formed by the root in BI phylogeny. 
Note, we distinguished the terms “cluster” and “clades” to 
refer to a grouping of taxa in MJN and BI tree, respectively, 
as the latter represents a monophyletic group (i.e., an an-
cestor and all its descendants) whose information is un-
available in MJN (Kong et al., 2015). In one case where mul-
tiple root positions were plausible (shown in case study 1), 
we produced multiple MJN topologies using different root 
positions. Finally, the outgroup taxa in the BI phylogenies 
were removed before statistical comparison to ensure all 
topologies being tested contained identical sets of leaves. 

2.3 Analysis   

The topologies obtained from MJN and BI analyses were 
statistically compared using an AU test (Shimodaira, 2002) 
implemented in the software CONSEL (Shimodaira & 
Hasegawa, 2001). We also conducted the SH test imple-
mented in PAUP* version 4.0b10 (Swofford, 2003). Site-wise 
log-likelihood matrix for each tree using Alignment 1 was 
obtained using PAUP* followed by execution of SH test with 

 bootstrap replicates using the Resampling of Estimated 
Log Likelihoods (RELL) method (Kishino et al., 1990). Be-
cause CONSEL did not read the matrix from PAUP*, the out-
put matrix was transformed into CONSEL-readable format 
using a custom python script written by Mark Holder. The 
transformed matrix file was treated using makermt function 
in CONSEL to read the matrix and generate  bootstrap 
replicates using the RELL method. The resulting file with 
extension .rmt was processed with CONSEL, which read the 
bootstrap-replicates of log-likelihood from makermt and cal-
culated -values for the AU test. We used catpv function to 
visualize the final -values with the significance level  set 
as 0.05. 
The AU test, which was originally intended to assess the 

confidence for a tree among a set of optimal trees, com-
putes the -value to the difference in likelihood among the 
input topologies based on the same dataset that represents 

the possibility that the tree is the true tree (Shimodaira, 
2002). This property of -value may be informative if the 
tree was inferred under a single methodology or in different 
methods that are equally reliable. We have prior knowledge 
that MJ is a philosophically unsuitable method for phyloge-
netic inference due to its phenetic-based algorithm. There-
fore, we assumed that the -value only reflected significant 
differences in topologies and not the probability of being 
correct. 

3 Results   

Figure 2 summarizes the number of sequences, the scale 
(i.e., intra- or interspecific), and type (i.e., mitochondrial 
or nuclear DNA) of data of the 85 empirical datasets ex-
tracted from 55 studies analyzed in this study. Forty-nine 
(57.6%) out of 85 datasets centered on one species, and 
36 (42.4%) contained two or more species. Fifty out of 85 
datasets (58.8%) were mitochondrial loci, and 35 (41.2%) 
involved nuclear genes. Additional information on the se-
quence length, nucleotide model selected, -values from 
AU and SH tests, and the source where the sequences were 
extracted from for each case is summarized in the Supple-
mentary Material 1. Focusing on a diversity of organisms, 
a total of 4,149 ingroup DNA sequences were analyzed, 
and each dataset contained from seven to 212 sequences. 
A total of 265 outgroup sequences were included, ranging 
from one to six per dataset. Seventy-five out of 85 datasets 
contained less than 100 sequences, and, among these, 57 
datasets contained less than 50 sequences. The shortest 
length of sequence alignment was 235 base pairs (bp), and 
the longest was 6490 bp. Further, 68 out of 85 datasets had 
the sequence length of less than 1000 bp after alignment, 
and only one dataset had sequence length of more than 
2000 bp. The computed MJNs for each dataset are avail-
able in the Supplementary Material 2. Mesquite executable 
NEXUS files, each of which contains sequence alignment, 
50% majority rule consensus BI phylogeny, and the trans-
formed MJN topology for each case, are provided in the 
Supplementary Material 3. 
Topologies differed significantly (i.e., AU ) in 32 

out of 85 cases (37.6%). Significant topological discrepan-
cies were not dependent on whether the dataset was intra- 
or interspecific, mitochondrial or nuclear DNA, or the se-
quence length of the dataset. While the difference of likeli-
hood between the two topologies was generally small (i.e., 

) in most of the cases, four cases showed relatively 
large difference (191.7–802.2), and significance was found 
for all four. Among the 53 cases where the significance was 
not observed, MJN and BI topologies showed some discrep-
ancies in branching patterns in 51 cases (96.3%), and the 
topologies were identical in two cases only. The discrepan-
cies included positions of clades (or clusters in MJN), con-
stituents of a clade (or cluster), or the branching pattern of 
the topology (see case studies below). 
In several cases where significant discrepancies were ob-

served, the MJN topology had greater likelihood than the BI 
phylogeny. This was not surprising because the 50% major-
ity rule consensus topology represents a summarization of 
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Figure 2. Summary of the 85 analyses (X-axis represents 
case number) conducted in this study. Y-axis represents 
the number of sequences. Each point represents a dataset, 
where circles and triangles represent whether the dataset 
contains inter- or intraspecific terminals, respectively. Red 
and green color represents whether the loci in the datasets 
are mitochondrial or nuclear DNA. 

a set of sampled trees from the posterior distribution and 
often contains unresolved nodes, which consequently leads 
to reduced likelihood. Nevertheless, we did not make any 
interpretation based on the likelihood score because the MJ 
method does not perform philosophically suitable phyloge-
netic inference, as mentioned in the Methods section. In-
stead, we only focused on if two topologies are incongru-
ent. In the following section, we show two cases where BI 
topologies had greater likelihood than MJNs’. 
While SH and AU tests generally exhibited similar re-

sults, an overly conservative pattern in the SH test was ob-
served as stressed by Strimmer & Rambaut (2002) and Shi 
et al. (2005). When two competing topologies were not sig-
nificantly different, both tests agreed in all cases. The two 
tests agreed in 16 out of 32 cases when the significance was 
observed between the topologies. However, the two tests 
did not agree in 16 out of 32 cases when discrepancies be-
tween the two topologies were observed, and, in all of these 
cases, significance found using the AU test was veiled in the 
SH test. 

3.1 Case study 1: Significantly different 
topologies 

      
 

Yu et al. (2012) analyzed mitochondrial DNA sequences 
from Ochotona curzoniae (the plateau pika) of the Qinghai-
Tibetan Plateau, China. We selected 27 D-Loop sequences 
(GenBank accession numbers JN165313–17; JN165320; 
JN165322; JN165324–29; JN165332, JN1653323; 
JN165335–45; JN165350) that were included in the MJN 

Table 1. The Approximately Unbiansed (AU) and 
Shimodaira-Hasegawa (SH) test results for four topologies 
from BI and MJNs using three different roots of Ochotona 
curzoniae D-Loop sequences from Yu et al. (2012). For each 
tests for the topology listed under the column labeled as 
Item, Obs. represents the observed loglikelihood 
differences, and AU and SH represent their computed 
p-values. 

Topology Item Obs. AU SH 

1 BI -13.2 0.960 0.954 

4 
MJN, 

root C 
13.2 0.046 0.055 

3 
MJN, 

root B 
13.2 0.045 0.055 

2 
MJN, 

root A 
15.1 0.031 0.042 

presented in Figure 3B of Yu et al. (2012). Note that some 
haplotypes used to compute the original MJN were excluded 
in our analysis to eliminate unwanted cycles. We selected 
three outgroup sequences of O. collaris (AF348080), O. prin-
ceps (AJ537415), and Lepus sinensis (KM362831), where the 
former two were suggested in the original study, and the 
latter was selected using BLAST. 
The final alignment was 672 bp long. We set  and 

weight  for computing the MJN. No pre- or post-pro-
cessing option was taken. Each sequence represented an ac-
tive, unique haplotype (i.e., 27 terminal vertices exist in the 
MJN), and a total of 142 mutations were counted for the 
shortest network. For BI analysis, the GTR+I+  substitution 
model was selected for the sequence evolution, and a single 
MCMC analysis of  iterations was performed. 
Figure 3 shows the BI 50% majority-rule consensus phy-

logeny (Fig. 3a), MJN (Fig. 3e), and three transformed MJNs 
using the root positions A, B, and C (Fig. 3b–d, respectively) 
that are indicated in the MJN. The BI phylogeny had four 
primary clades, where the members of Clades 1, 2, 3, and 
4 are colored in blue, green, purple, and red, respectively, 
in Figure 3a. The posterior probability for each node that 
represented the most recent common ancestor (MRCA) for 
each clade was high. These values ranged from 0.86 to 0.99, 
except for Clade 4, which had 0.62. Four clusters in the 
MJN corresponded to the BI phylogeny (the sequences that 
belong to the Clades 1–4 in the BI phylogeny are colored 
using the same scheme described above in Figure 3e), but 
no root position that would provide the same evolutionary 
direction as in the BI phylogeny was available. The three 
most probable root positions were A, B, and C as shown in 
yellow stars in Figure 3e. Roots A and B were placed on the 
edges with the longest lengths. Although the edge between 
Clusters 1 (blue) and 2 (green) was long, it was not selected 
as a possible root placement because the two clusters were 
sister taxa in the BI tree with MRCA that is not the root. Be-
cause a root may not necessarily position on long edges, we 
also identified root C as it grouped Clusters 1 and 2 despite 
the short length that separated some members of cluster 4. 
None of the topologies with roots A, B, or C resolved mono-
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Figure 3. (a) Reconstructed 50% majority-rule consensus Bayesian inference (BI) phylogeny using 27 Ochotona curzoniae 
D-Loop sequences from Yu et al. (2012), rooted with outgroup sequences (posterior probabilities and outgroup sequence 
are not shown here). Four clades were identified and color coded with blue, green, purple, and red for Clades 1, 2, 3, and 
4, respectively. (b) MJN topology using the Root A, (c) Root B, and (d) Root C that are selected and labeled in the 
computed MJN in (e) with yellow stars. We used the same color scheme mentioned above to mark the members of each 
clade for all topologies and MJN. Small black dots in (e) represent computed median vectors. 

Table 2. AU and SH test results for topologies from BI and 
MJN of Coreoperca whiteheadi cytochrome b sequences 
from Cao et al. (2013). Obs. represents the observed log-
likelihood differences. AU and SH represent p-values for 
each tests for the topology listed under the column labeled 
as Item. 

Topology Item Obs. AU SH 

1 BI -4.3 0.857 0.825 

2 MJN 4.3 0.143 0.175 

phyly of Cluster 4 (Figs. 3b–d). PAUP* was used to calculate 
site-wise log-likelihood scores for all four rooted topologies 
using the GTR+I+  nucleotide substitution model. 
The AU test (Table 1) showed that the BI topology dif-

fered significantly in branching pattern from all three MJN 
topologies ( ). In comparison, the SH test showed 
that the BI topology differed significantly from the MJN us-
ing root A only, although root positions B and C had small 
-values. 

3.2 Case study 2: Insignificantly different 
topologies 

      
 

We used the mitochondrial cytochrome b sequence dataset 
of Coreoperca whiteheadi (East Asian perch) from Cao et 
al. (2013). We selected 53 sequences of C. whiteheadi 
(JN315557–JN315609) along with outgroup sequences from 
Lateolabrax japonicus (DQ3515-31) and Siniperca chuatsi 
(KC888071), as suggested by the authors, plus Trachinotus 
rhodopus (AY050739) selected via BLAST. The length of fi-
nal alignment was 1141 bp. 
Analyses replicated the MJN in Figure 3a of Cao et al. 

(2013). The 11 haplotypes contained from one to 19 se-
quences, and the final network identified 203 mutations 
among the haplotypes. We used the GTR +I+  nucleotide 
substitution model, as selected by MrModelTest using AIC, 
for the construction of BI phylogeny. The identified posi-
tion of the root on the MJN (see Fig. 4c) provided the same 
directionality as in the BI phylogeny (Fig. 4a). The root oc-
curred on the longest edge of the MJN (Fig. 4c), which rep-
resented 106 nucleotide differences. We converted the MJN 
into a tree using the selected root position (Fig. 4b). 
The BI phylogeny had four primary clades (the members 

in Clades 1, 2, 3, and 4 are colored in red, green, blue, 
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Figure 4. (a) Reconstructed 50% majority-rule consensus BI phylogenetic tree using 53 Coreoperca whiteheadi cytochrome 
b sequences from Cao et al. (2013), rooted with outgroup sequences (posterior probabilities and outgroup sequences are 
not shown). (b) MJN topology using the identified root position in MJN shown in (c) (i.e., yellow star) . Four clades were 
identified in (a), and we color coded clade 1, 2, 3, and 4 using red, green, blue, and purple, respectively. Same color 
scheme was applied for (b) and (c). Small black dots in (c) represent computed median vectors. 

and purple, respectively, in Figure 4a). The relationships 
between Clades 2, 3, and 4 were inconsistent between the 
BI phylogeny and MJN topology (Figs. 4a and 4b, respec-
tively). In the BI phylogeny, Clades 3 and 4 shared the 
MRCA with posterior probability of 1.0. However, the MJN 
grouped Clusters 2 with 3. Despite the differences in 
branching pattern, the relationships depicted in BI phy-
logeny and MJN were not shown to be significantly different 
based on both the AU and SH test (Table 2). Although no 
significant difference occurred in the AU and SH tests, the 
biological interpretations based on the MJN would be prob-
lematic due to differences in the resolved branching order. 

4 Discussion   
4.1  Problems  of  Median-Joining  Network  
analysis  

Our analyses find statistically significant discrepancies be-
tween topologies from BI and MJ in 37.6% of the cases eval-
uated based on AU test output. If BI produces a more re-
liable evolutionary history than MJ, then MJ method too 
often fails to produce a correct suite of relationships for 
confident evolutionary inference. Even in the 62.4% of 
cases where statistical significance does not occur, differ-

ences in branching patterns often represent different evo-
lutionary histories among the sequences (see case study 2). 
Therefore, MJ largely produces misleading hypotheses of 
relationships and character evolution. Phenetic-based MJ 
has many unrealistic assumptions, such as ignoring homo-
plastic evolution. This has led many authors to criticize 
phenetic methods for failing to produce ‘true’ phylogenies 
(Cheema & Dicks, 2009; Lawrence et al., 2002). While MJ 
and BI produce marginally different sets of relationships in 
terms of the AU test output in more than half of the cases, 
sometimes the differences are critical, for example, when 
MJ fails to correctly identify monophyletic groups. 
One of the biggest problems with MJNs, and probably 

all un-rooted networks, is the absence of evolutionary di-
rection (Kong et al., 2015). Identification of monophyletic 
groups is only possible given direction, i.e., ancestor–de-
scendent relationships. An outgroup serves to infer hy-
pothetical ancestral states and, in doing so, roots an un-
rooted branching structure (Lyons-Weiler et al., 1998; 
Maddison et al., 1984; Sanderson & Shaffer, 2002; Smith, 
1994; Watrous & Wheeler, 1981). Although the software 
NETWORK allows the user to root the network, this option 
merely links the outgroup sequence to the most similar 
haplotype of the already produced ingroup network (Kong 
et al., 2015; Sánchez-Pacheco et al., 2020). For example, 
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Sakaguchi et al. (2012) employed the rooting option to root 
the MJN for 26 chloroplast haplotypes, yet the branching 
pattern differed from the inferred MP phylogeny using the 
same outgroup. Additionally, the option only allows one se-
quence to be entered, yet more than one outgroup taxon 
may be necessary to obtain reproducible results (Maddison 
et al., 1984; Smith, 1994). 
Given its phenetic nature, overall similarity influences 

the MJ algorithm very strongly, especially in computations 
involving gaps and ambiguous states. When the amount of 
gaps is large due to excessive amounts of indels, MJ can cre-
ate complicated cyclic structures that are almost impossi-
ble to interpret. Consequently, it has been recommended to 
minimize gap sites prior to analysis (Bandelt et al., 1999), 
but this can be a very subjective process (DeSalle et al., 
1994). Moreover, gaps can be phylogenetically informative, 
improve branch support, and even change a topology (Nagy 
et al., 2012; Simmons & Norton, 2014). Trimming by the 
simple removal of the gaps can result in the loss of oth-
erwise informative sites, and, thus, it does not necessar-
ily lead to better trees (Dessimoz & Gil, 2010; Löytynoja & 
Goldman, 2008; Wong et al., 2008; Wu et al., 2012). 
The treatment of ambiguous states in the construction 

of MJNs is also problematic. Bandelt et al. (1999) suggested 
using ambiguous states in the alignment infrequently. 
However, MJ tolerates ambiguity codes such as  = R 
(purine) = {A, G} or  = N = {A, T, C, G} and others, where 

 represents the set of nucleotide states that specify the 
ambiguous state. Here, the MJ algorithm replaces the am-
biguous state by assigning the most common state of the 
other minimally distant sequences in prior to the computa-
tion. This procedure is arbitrary and can result in the loss of 
potentially informative variations in the data. To illustrate 
the problem, we use three hypothetical sequences with five 
bp each–SQ1=CAACG, SQ2=GCCAC, and SQ3=AGCGA (Fig. 
5a)–used in the construction of Figure 3 of Bandelt et al. 
(1999). Each sequence differs at three sites from each other: 
sites 1 and 2, plus 3 for SQ1, 4 for SQ2, and 5 for SQ3. Figure 
5h shows the MJN constructed using the alignment in Fig. 
5a. 
Because MJ simply identifies relationships based on 

overall similarity, the resulting network is the same when 
the character states that are unique for each haplotype (i.e., 
site 3 for SQ1, 4 for SQ2, and 5 for SQ3) differ from another 
character state, as long as it still distinguishes them. For 
example, when the sites 3, 4, and 5 in SQ1, SQ2, and SQ3, 
respectively, have nucleotide state A and then changed to 
T (Fig. 5b) or a gap (Fig. 5c), the network structure remains 
as in Figure 5h. Similarly, when the sites 3, 4, and 5 in SQ1, 
SQ2, and SQ3, respectively, are replaced by ambiguous sites 
(Fig. 5d) or a mixture of nucleotide, gap, and an ambiguous 
site (Fig. 5e), the network structure remains unaltered. 
Figures 5d and 5e use ambiguous nucleotides that are 

not the same as in other sequences. For example, ambigu-
ous site R exists in site 3 of SQ1; it can be either A or G, but 
not C (i.e., the state SQ2 and SQ3 possess at site 3). Sim-
ilar ambiguous replacements for the other cases illustrate 
the problem. When we replace SQ1 with N (= A,T,C,G) or M 
(= A,C), the MJ algorithm arbitrarily switches the site to C 

Figure 5. Example of the treatment of ambiguous states in 
the construction of MJNs. Sequence alignments (a–e) 
result in the MJN shown in (h), whereas the alignments (f) 
and (g) result in the MJN (i). Note the two MJNs have 
different biological interpretations as the algorithm 
arbitrarily removes variabilities in the presence of the 
ambiguous sites. 

by comparing it with the minimally distant sequence; this 
preference eliminates the median vector on the edges (Fig. 
5f, 5g, and 5i) based solely on algorithm-assigned overall 
similarity. Networks in Figures 5h and 5i do not have identi-
cal biological interpretations, and more complex problems 
can arise when evaluating longer sequences and more taxa. 

4.2 Excessive conservativeness of the SH test        

Researchers often compare the significance of one or a set 
of optimal trees from different phylogenetic methods (e.g., 
Kazlauskas et al., 2019; Naser-Khdour et al., 2019; Spence 
et al., 2021) or how strongly competing topologies can be 
rejected relative to the preferred one (e.g., Coleman et al., 
2021; Espeland et al., 2018; Hime et al., 2020; Miller et 
al., 2020; Yan et al., 2021) using SH and AU tests. They 
employ similar rationale, yet selection-bias in the SH test 
can lead to overconfidence in incorrect trees when more 
than two trees are compared (Goldman et al., 2000; Shi-
modaira & Hasegawa, 1999). Moreover, Strimmer & Ram-
baut (2002) pointed out that the SH test can also be very 
conservative, and the number of trees in confidence set can 
increase with the number of trees being compared. Thus, 
Shimodaira (2002) proposed the AU test, which is less con-
servative than the SH test. 
By comparing the outputs of AU and SH tests, we re-

confirm the over-conservativeness of the SH test. For cases 
in which significant discrepancies exist between the two 
topologies in at least one of the tests, the two tests arrive at 
different confidence values in 16 out of 32 cases. Here, the 
SH test fails to detect significant discrepancies found by the 
AU test. In other words, the AU test confidently selects one 
topology out of the two topologies tested, but the SH test 
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selects both trees as being equivalent (or the difference is 
insignificant) due to its conservative nature. This observa-
tion is congruent with the reanalysis of mammalian mito-
chondrial protein-coding sequences in Shimodaira (2002). 
In the reanalysis, the SH test resulted in eight trees where 
their -values were not significant at  out of 15 
competing hypotheses, whereas AU resulted in only six. 

5 Conclusions   

In conclusion, MJ analysis is appealing because it is com-
putationally simple and fast and yields attractive graphical 
representation of the data. Nevertheless, MJ should not be 
used in evolutionary studies given its distance-based phe-
netics, the absence of direction (Kong et al., 2015; Sánchez-
Pacheco et al., 2020), the inherent assumption that all lin-
eages evolve at equal rates (i.e., overall similarity reflects 
phylogeny), and the extent of statistically significant mis-
matches between the MJN and BI topologies. The frequency 
that MJ shows problematic branching patterns, and thus 
incorrect inferences of evolutionary relationships among 
taxa, can be higher than 95% (as only two out of 85 cases 
show identical relationships between MJN and BI topolo-
gies). Indeed, the branching patterns produced by MJN 
analyses differ statistically significantly in major ways from 
BI trees in 37.6% of our case studies. This is not a trivial 
problem in an era when researchers are using phylogenetic 
trees to help solve a wide range of problems, from identi-
fying the source of human pathogens to making conserva-

tion decisions. Such enterprises require the use of the most 
robust phylogenies possible, which, in turn, requires the 
use of defensible and rigorous methods for reconstructing 
trees. Our study reinforces the decades-old recognition that 
phenetic-based algorithms are not a defensible way to hy-
pothesize evolutionary relationships. 
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