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Abstract  
Introgression creates complex, non-bifurcating relationships among species. At individual 
loci and across the genome, both introgression and incomplete lineage sorting interact 
to produce a wide range of different gene tree topologies. These processes can obscure 
the history of speciation among lineages, and, as a result, identifying the history of 
speciation vs. introgression remains a challenge. Here, we use theory and simulation to 
investigate how introgression can mislead multiple approaches to species tree inference. 
We find that arbitrarily low amounts of introgression may potentially mislead both gene 
tree and parsimony approaches to species tree inference if the level of incomplete lineage 
sorting is sufficiently high. We also show that an alternative approach based on minimum 
gene tree node heights is inconsistent and depends on the rate of introgression across 
the genome. To distinguish between speciation and introgression, we apply supervised 
machine learning models to a set of features that can easily be obtained from 
phylogenomic datasets. We find that multiple of these models are highly accurate in 
classifying the species history in simulated datasets. We also show that, if the histories 
of speciation and introgression can be identified, PhyloNet will return highly accurate 
estimates of the contribution of each history to the data (i.e. edge weights). Overall, our 
results highlight the promise of supervised machine learning as a potentially powerful 
complement to phylogenetic methods in the analysis of introgression from genomic data. 

Introduction  

Introgression, the process of hybridization and repeated 
back-crossing between previously isolated lineages, occurs 
frequently across the tree of life and is a common feature of 
modern phylogenomic datasets (Mallet et al., 2016; Taylor 
& Larson, 2019, Dagilis et al. 2021). From a phylogenetic 
perspective, histories of introgression are not consistent 
with a strictly bifurcating phylogeny and are therefore of-
ten represented using phylogenetic networks (Huson et al., 
2010; Huson & Bryant, 2006; Solís-Lemus & Ané, 2016; 
Wen et al., 2018; Wen & Nakhleh, 2018). Phylogenetic net-
works contain additional horizontal “reticulation” edges, 
which are meant to display alternative histories among loci. 
Such networks imply that some parts of the genome follow 
the speciation history, while other parts follow the intro-
gression history—a history that includes exchange between 
species post-speciation. Speciation and introgression often 
co-occur and can influence each other through processes 
such as reinforcement. Nonetheless, for these and other 
reticulate evolutionary processes, such as horizontal gene 

transfer and allopolyploidization, the presence of compet-
ing histories in the genome presents both conceptual and 
methodological challenges for inferring the history of spe-
ciation among lineages (Eckert & Carstens, 2008; Philippe 
& Douady, 2003, Thomas et al. 2017). 

In phylogenomic studies, it is common to estimate a 
species tree using standard methods and then to interpret 
the results of introgression analyses using that species tree. 
Many popular methods for inferring introgression, such as 
the D statistic (Green et al., 2010), require a species tree to 
be specified a priori. Phylogenetic network methods co-es-
timate both histories, but they cannot explicitly label which 
history arose from speciation vs. introgression: they only 
infer that both histories exist in the data. Networks are of-
ten estimated with a previously constructed species tree in 
mind (often referred to as the “major” or “backbone” tree); 
this can be because the method requires a species tree be 
specified, or because the user has already estimated or as-
sumed a bifurcating species tree before the network method 
is applied. Consequently, this pre-specified history is com-
monly assigned as the history of speciation implied by a 
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network. It is also common for software to assign the his-
tory of speciation to the network edge with the higher in-
heritance probability (e.g. Pickrell & Pritchard, 2012), un-
der the assumption that the majority of the genome follows 
the speciation history. This approach to studying introgres-
sion typically ignores problems of uncertainty in species 
tree estimation, leading to erroneous inferences if the 
species tree is mis-estimated. 

What makes this problem especially challenging is that 
introgression itself is a known source of species tree esti-
mation error (Eckert & Carstens, 2008; Leaché et al., 2014; 
Long & Kubatko, 2018; Pang & Zhang, 2023; Solís-Lemus 
et al., 2016). Furthermore, several studies have now shown 
that introgression can be extensive enough to affect a ma-
jority of the genome (Fontaine et al., 2015; Forsythe et al., 
2020; Li et al., 2019), so choosing the majority edge of a 
phylogenetic network as the species history can also lead 
to incorrect inferences. Consider, for example, a history of 
speciation of ((A,B),C), with post-speciation introgression 
between lineages B and C (Figure 1A). Sufficient levels of 
introgression between B and C could cause a species tree 
of ((B,C),A) to be erroneously inferred (Figure 1B). Sub-
sequent application of this tree to introgression analyses 
would result in the incorrect inference of introgression be-
tween species A and B (Figure 1C). Distinguishing between 
the scenarios shown in Figures 1A and 1C remains a chal-
lenge in empirical datasets.    

Figure 1. Mis-specifying the species tree affects downstream introgression analyses. 
Sufficient introgression between species B and C (panel A) may cause the species tree to be incorrectly inferred, with species B and C becoming the most closely related (panel B). If 
this incorrect species tree is used for introgression analyses, introgression could erroneously be inferred between species A and B (panel C). 

Efforts to distinguish histories of speciation and intro-
gression are complicated by incomplete lineage sorting 
(ILS), a stochastic process in which lineages fail to coalesce 
in their most recent common ancestor (Hudson, 1983; 
Pamilo & Nei, 1988; Tajima, 1983). The stochastic nature 
of ILS means that both speciation and introgression histo-
ries can generate similar gene tree topologies at a locus. 
This makes it challenging to assign histories based solely 
on gene tree frequencies. For instance, the speciation his-
tory ((A,B),C) can generate a gene tree with the topology 
((B,C),A) in the absence of introgression between B and C. 
A significant asymmetry in discordant gene tree frequen-
cies is generally taken as evidence of introgression, but the 
wrong taxa can be implicated in introgression if the wrong 

species tree is used. Therefore, gene tree frequencies alone 
do not contain enough information to distinguish the in-
trogression history from the species history, only enough 
to infer that introgression has occurred. One proposal has 
been to identify the introgression history as the one with 
the minimum average gene tree node height (Fontaine et 
al., 2015; Forsythe et al., 2020; Li et al., 2019). The logic 
behind this test is that post-speciation introgression is, by 
definition, more recent than speciation, leading to more re-
cent coalescence. This rule should be reliable in cases with 
large amounts of introgression, but if introgression occurs 
at lower rates, then most gene trees matching the intro-
gression history will be generated by ILS. In this case such 
trees will contain deeper nodes than the history of specia-
tion. It is therefore unclear how much introgression is nec-
essary for this approach to be useful. 

While introgression and ILS reveal the complicated non-
bifurcating ways that species are related to one another, 
understanding the history of speciation and introgression 
is still crucially important. The species tree provides a sum-
mary of the natural history of organisms, including their 
taxonomic groupings, divergence times, and dynamics of 
speciation and extinction (O’Meara, 2012). Understanding 
the species history is also central to understanding the role 
for introgression in evolution (Blair & Ané, 2020; Dowling 
& Secor, 1997; Harrison & Larson, 2014; Rhymer & Sim-
berloff, 1996; Taylor & Larson, 2019). Misspecification of 
the species tree can significantly impact many downstream 
analyses, including inferences of introgression and the re-
construction of ancestral states. For these reasons, distin-
guishing histories of speciation from those of introgression 
remains an important and unsolved problem. 

Here, we use theory, simulation, and supervised machine 
learning analyses to investigate how histories of speciation 
and introgression may be disentangled. We ask how much 
introgression is necessary to potentially mislead several 
approaches to species tree inference, including summary 
gene tree approaches, parsimony, phylogenetic network ap-
proaches, and approaches based on minimum node depths. 
To try to disentangle these histories, we train supervised 
machine learning models on simulated datasets from com-
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peting species tree topologies and introgression events, 
finding that the species tree can be recovered with a high 
degree of accuracy. Using feature-importance analyses, we 
find that the variances in coalescence times within the two 
competing gene tree topologies are the most informative 
features, but no single piece of information alone can accu-
rately recover the species tree topology in all areas of pa-
rameter space. Based on our findings, we provide recom-
mendations to researchers dealing with complex histories 
of reticulation in phylogenomic datasets. 

Materials  and  Methods  

Modelling  the  minimum  amount  of  
introgression  needed  to  make  gene  trees  and  
site  patterns  supporting  the  history  of  
introgression  the  most  frequent  

We begin with an exploration of a theoretical question: 
how much introgression is necessary to make the gene tree 
topology matching the history of introgression the most 
common gene tree? This question has implications for 
summary approaches that infer species trees using the most 
common gene trees among quartets or rooted triplets (e.g. 
Liu et al., 2010; Zhang et al., 2018), and has been addressed 
in different ways in a handful of previous studies (Long & 
Kubatko, 2018; Pang & Zhang, 2023; Solís-Lemus et al., 
2016; Zhu et al., 2016). We make use of the multispecies 
network coalescent framework, which models the effects 
of introgression and ILS on gene trees simultaneously by 
breaking histories of speciation and introgression into sep-
arate “parent tree” histories (Degnan, 2018; Hibbins & 
Hahn, 2019; Meng & Kubatko, 2009; Yu et al., 2014) (Figure 
2). These parent trees are similar in concept to the dis-
played trees embedded in a phylogenetic network (Figure 
1) (Zhu et al., 2016), but we use them as different histories 
within which to model the multispecies coalescent. We use 
“network” or “network model” to refer to the general model 
that combines multiple histories in a probabilistic frame-
work (Figure 2A); “history” to refer to particular biological 
histories of speciation and introgression (i.e. parent trees, 
Figure 2B); and “topology” to refer to the relationships 
among species observed in a specific tree, regardless of its 
origin. 

In what follows, we use “speciation” to refer to periods of 
divergence without gene flow; in phylogenies such events 
most commonly represent the evolution of reproductive 
isolation between species but could also be applied to pop-
ulations undergoing periods of divergence. Consequently, 
the speciation history corresponds to the sequence of split-
ting events that result in lineages becoming reproductively 
isolated from one another, and therefore having indepen-
dent coalescent histories. Introgression occurs after speci-
ation between particular pairs of species, with histories of 
introgression putting the species involved as sister lineages 
(e.g. Figure 2B). Similar network models can be applied to 
other reticulate processes such as horizontal gene trans-
fer and allopolyploidization, but we do not consider these 
processes here. 

We model a rooted three-taxon tree with the species 
topology ((A,B),C) (Figure 2A). The internal branch shared 
by species A and B has a length of , in units of 2N genera-
tions. Post-speciation introgression occurs between species 
B and C in two possible directions: C → B and B → C. We 
model these two directions as separate possible introgres-
sion events that occur at rates of δ2 and δ3, respectively 
(Figure 2B). These δ parameters correspond to the propor-
tion of the genome that has introgressed within each his-
tory and are equivalent to the inheritance probability para-
meters used in phylogenetic networks, often denoted γ (e.g. 
Meng & Kubatko, 2009; Yu et al., 2012). The histories pro-
duced by each direction of introgression also contain inter-
nal branches shared by species B and C, which we denote 

 and  for introgression from C → B and B → C, re-
spectively (Figure 2B). The length of this internal branch 
is affected by the direction of introgression; for instance, 
when introgression is B → C, the presence of lineages from 
B in C allows C to coalesce with A more quickly, resulting 
in a smaller value of  (Hibbins & Hahn, 2019, Figure 2B). 
Although processes of speciation and introgression occur 
over continuous time intervals, we model them as instan-
taneous “pulse” events for simplicity and consistency with 
the literature. 

For the sake of mathematical tractability and visualiza-
tion of results in the models presented here, we combine 
the two directions of introgression into averaged δ and 
parameters. As we treat each direction as an independent 
event, the total amount of introgression is simply the sum 
of the two δ parameters, giving 

For the  parameter, we sought to solve for a single pa-
rameter that incorporates the contributions of both direc-
tions of introgression to the overall rate of gene tree discor-
dance. This gave us the following expression (see Section 1 
of the Supplement for the complete derivation): 

We use these formulations of δ and  in all equations that 
follow. 

Within a particular history, concordant trees (with re-
spect to that history) arise with probability , and 
a given discordant gene tree will arise with probability 

, where  is the length of that history’s internal 
branch (Figure 2C). To get the overall expected frequencies 
of each gene tree topology, we weight the expected fre-
quencies within each history by the probability that a locus 
follows that history (1 – δ for the species history, and δ for 
the introgression history). In what follows, we will refer to 
gene trees that match the species history as “AB” trees, and 
those that match the history of introgression as “BC” trees. 
For gene trees matching the species history (black tree in 
Figure 2B), their frequency, , is 

and for gene trees matching the introgression history (blue 
tree in Figure 2B), their frequency, , is 
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To find the amount of introgression required to make 
equal to , we set the expected frequencies of the two 
topologies equal to one another, giving the following:

Solving for δ, we obtain the following expression: 

This same expression has been derived in Jiao et al. (2020) 
and Pang and Zhang (2023) for unidirectional introgression 
but can now be applied to arbitrary amounts of introgres-
sion in both directions using the definitions of δ and 
provided in Equations 1 and 2. 

We applied the same theoretical framework to ask a dif-
ferent but related question: how much introgression is nec-
essary to make the biallelic site pattern supporting the 
introgression history the most common? These parsimony-
informative sites are important to the performance of many 
standard methods for phylogenetic inference. Biallelic sites 
arise from mutations on internal branches of gene trees 
(Figure 2C). Assuming an infinite-sites model (i.e. no mul-
tiple hits), the sum of the lengths of internal branches of 
relevant gene trees gives us the expected number of par-
simony-informative sites supporting either the ((A,B),C) or 
((B,C),A) gene trees (Mendes & Hahn, 2018). For gene trees 
that arise from lineage sorting in each history (which oc-
curs with probability ), the internal branch length is 

 (Mendes & Hahn, 2018), while for all other gene 
trees (i.e. the ones due to incomplete lineage sorting in 
any history) the internal branch length is 1 (in units of 2N 
generations). To obtain the average internal branch length 
across histories, we weight the relevant branch lengths 
within each history by the frequencies of the gene trees, 
and then across histories by their probabilities at a locus. 
This gives the following expression for biallelic sites that 
support the species history:

        

    

and this expression for sites supporting the history of in-
trogression: 

To find the  value required to make site patterns from 
both histories equally frequent, we set these two expres-
sions equal, as before. After solving for  and simplifying, 
we obtain the following expression:     

To our knowledge, this relationship has not been found be-
fore. 
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Figure 2. Modelling histories of speciation and introgression. 
A) A phylogenetic network is used to model histories of speciation and introgression in a single probabilistic framework. B) The individual histories (speciation and introgression) 
modelled by a network can be separated into “parent trees” that describe the histories of speciation or introgression at individual loci. Loci follow histories of introgression with 
probability δ2 (for C → B introgression) and δ3 (for B → C introgression), corresponding to the proportion of introgression across the genome. The internal branch lengths  and , 
for histories of speciation and introgression, respectively, are determined by the timing of introgression relative to speciation and the direction of introgression. Our model allows for 
arbitrary amounts of introgression in either or both directions, with  and δ being weighted averages of the contributions of both directions. C) These three histories generate gene 
trees with expected frequencies and branch lengths under the standard multispecies coalescent model, which includes incomplete lineage sorting within each history. Mutations on 
the internal branches of these gene trees lead to parsimony-informative biallelic sites (shown as black dots and 0/1 ancestral/derived states at the tips). 
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Modelling the minimum gene tree node 
height 

      
 

We also used our model to investigate the “minimum node 
height” criterion for distinguishing between histories 
(Fontaine et al., 2015; Forsythe et al., 2020; Li et al., 2019). 
For this analysis we make use of the expected coalescence 
times and conditional gene tree frequencies derived in Hi-
bbins and Hahn (2019). Since gene trees in real data arise 
from a combination of different histories, we obtain general 
expressions here by averaging the time to first coalescence 
across all possible gene trees that share the same topology. 
These times to first coalescence are measured conditional 
on a gene tree topology, so they must be weighted by the 
frequency of a particular gene tree relative to the frequency 
of all other possible gene trees that share that topology, 
rather than simply the overall expected frequency. We used 
these expressions to calculate the expected node heights 
of AB and BC gene trees over a range of parameter values 
from our model, and asked in which parts of the parameter 
space each node height was the smallest. See Section 2 of 
the Supplementary Materials and Methods for the relevant 
expressions. 

Simulating gene trees under the coalescent       

To validate our theoretical results, and to conduct down-
stream analyses, we simulated gene trees under various 
speciation and introgression scenarios using the program 
msprime (Baumdicker et al., 2022). For each simulated 
dataset, we denoted the history of speciation among lin-
eages as a Newick string and then used Demogra-
phy.from_species_tree() to convert this into an msprime de-
mography object. Introgression was added to these 
demography objects using the demo.add_mass_migration
function with the specified timing, direction, and rate of 
introgression. We then simulated tree sequences using 
sim_ancestry(), specifying a single haploid sample from each 
lineage with a recombination rate of 1x10-8 and a sequence 
length of 1x107. These tree sequences were converted into 
Newick trees for further parsing. We converted branch 
lengths to units of 2N generations assuming N = 10000 and 
sampled every third gene tree to reduce the effects of spa-
tial autocorrelation, resulting in approximately 1200 gene 
trees per dataset (i.e. for each unique combination of para-
meters). 

We simulated gene tree datasets in msprime under two 
competing network models: one where A and B are most 
closely related with post-speciation introgression between 
B and C (Figure 2A), and one where B and C are most closely 
related with post-speciation introgression between A and B 
(Supplementary Figure 1). The histories of speciation (“AB” 
for the scenario in Figure 2, “BC” for the scenario in Supple-
mentary Figure 1) in these two scenarios were used as la-
bels for binary classification. We simulated a 10x10x10 grid 
of , , and δ2 / δ3 values, in each of the two directions of 
introgression and for both possible network models, result-
ing in 4000 total simulated datasets.  and  both ranged 
from 0.1N to 2.2N generations, and δ2 and δ3 each ranged 
from 0.01 to 0.9 within each simulated direction of intro-

gression. For each network model, we simulated introgres-
sion from the unpaired lineage into the paired lineage (C 
into B or A into B; δ2 in Figure 2 and Supplementary Figure 
1), and from the paired lineage into the unpaired lineage (B 
into C or B into A; δ3 in Figure 2 and Supplementary Figure 
1), but not in both directions simultaneously. 

Supervised machine learning analyses to 
predict the history of speciation 

To investigate whether it is possible to accurately distin-
guish histories of speciation and introgression, we applied 
supervised machine learning approaches to our simulated 
gene tree datasets using the Python package scikit-learn 
(Pedregosa et al., 2011). For each simulated gene tree 
dataset, we used ETE3 (Huerta-Cepas et al., 2016) to parse 
21 features, including the frequency of each of the three 
gene tree topologies (3 features), the time to coalescence of 
each pair of species within each of the gene trees (3x3 = 9 
features), and the variances of these times to coalescence 
(3x3 = 9 features). See Supplementary Table 2 for a full 
description of each feature. The final dataframe therefore 
consisted of 4000 rows (one per set of simulated gene trees) 
and 21 columns (one for each feature). We split simula-
tions into a training dataset of 3000 observations and a test 
dataset of 1000 observations, and then standardized all fea-
tures using scikit-learn’s StandardScaler(). We trained five 
binary classification models on the training dataset, all us-
ing the default model parameters: logistic regression, sup-
port vector machine, Gaussian naïve Bayes, decision tree, 
and random forest. Finally, the performance of each of 
these trained models was scored on the test set. 

We assessed the importance of each feature to each 
model’s predictive power on the test set using the per-
mutation_importance() function in scikit-learn. This analysis 
randomly permutes each feature in the dataset and scores 
its importance by how much this permutation decreases 
model performance. Permutation was repeated 30 times for 
each feature, and a feature was deemed significantly impor-
tant for a model if its mean importance score across repli-
cates was at least twice that score’s standard deviation. We 
ranked the importance of each feature across models by 
taking the average importance score. To complement this 
analysis, we also performed stepwise model selection for a 
logistic regression model using the Akaike Information Cri-
terion (AIC), as implemented in the R package MASS. This 
approach begins with the full model containing all vari-
ables, and incrementally removes each variable in a step-
wise fashion until the model with the minimum AIC value, 
containing only the most informative variables, is reached. 

Assessment of PhyloNet edge weight 
estimates 

 

     
     

     
 

We ran PhyloNet’s InferNetwork_ML method (Yu et al., 2014) 
on simulated gene tree datasets to evaluate the accuracy of 
edge weight estimates against simulated introgression pro-
portions. We simulated gene trees with msprime under the 
same parameter combinations as for the machine learning 
analyses and used a custom Python script to convert the 
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outputs of these simulations into NEXUS-formatted input 
files for PhyloNet. On the PhyloNet outputs, we used the 
Julia package PhyloNetworks (Solís-Lemus et al., 2017) and 
ETE3 (Huerta-Cepas et al., 2016) to extract the weight of 
the edge in the network that corresponds to the known his-
tory of introgression. In cases where no introgression was 
inferred by PhyloNet, we assigned a weight of 0 when the 
estimated topology corresponded to the species tree, and a 
weight of 1 when it corresponded to the introgression his-
tory. Edge-weight estimates for each simulated value of the 
rate of introgression were averaged across all combinations 
of branch length parameters. 

Data  Availability  

Scripts and data for all analyses are available at 
https://github.com/mhibbins/dist_histories. 

Results  

Arbitrarily small amounts of introgression
can  make  gene  trees  and  site  patterns  
supporting  the  history  of  introgression  the  
most  frequent  

          

To visualize the amount of introgression necessary to make 
discordant gene trees more common than concordant ones, 
we plotted the  value derived in Equation 6 over the space 
of  and  (Figure 3A, Supplementary Figure 2). Overall, 
we find that the smaller  is, the less introgression is nec-
essary to make the introgression tree the most common 
gene tree. This occurs because smaller values of  lead 
to more ILS (and therefore more discordance), even in the 
absence of introgression. As the value of  approaches 0, 
the amount of discordance approaches 66% in the species 
tree history, and all tree topologies arise at approximately 
the same frequency. As this occurs, the amount of intro-
gression required to tip the balance toward the gene tree 
topology matching the introgression history approaches 0. 
The minimum value of  is also affected by the timing and 
direction of introgression, with more recent introgression 
(i.e. larger ) from C into B resulting in a lower minimum 
value of  required. Both the timing and direction of intro-
gression affect the amount of ILS within introgressed his-
tories, as more recent introgression and introgression from 
C into B both lead to longer internal branches in the in-
trogressed history (Figure 2). Conversely, if ILS is low in 
the species history (large ) and high in the introgression 
history (small  and B into C introgression), rates of in-
trogression can be very high (approaching 100%) and still 
not result in gene tree topologies matching the introgres-
sion history being most common. The histories of speci-
ation and introgression in the extremes of the parameter 
space considered here are summarized in Figure 3D. 

When plotting the minimum  value for parsimony-in-
formative sites derived in Equation 9 we find a similar over-
all pattern to the result for gene tree frequencies, but with 
a slightly different shape to the contours (Figure 3B). Once 
again, large amounts of ILS in the species history mean 

that little introgression is necessary to make sites support-
ing the introgression history the most common. The dif-
ferences between Figures 3A and 3B imply that parsimony 
methods may perform better than summary methods un-
der certain speciation and introgression scenarios, and vice 
versa. The logic behind this is that if biallelic sites, for 
example, have a larger minimum  value than gene tree 
frequencies in a particular area of parameter space, then 
parsimony methods (which rely on biallelic sites) can toler-
ate more introgression than summary methods (which rely 
on gene tree frequencies) before the introgression history 
becomes most supported. To better visualize these differ-
ences, we plot the gene tree frequency-based  value sub-
tracted from the parsimony-based  value in Figure 3C. In 
general, we find that methods that use gene tree frequen-
cies should perform better (i.e. require more introgression 
to be misled) than parsimony methods when the  value re-
quired is less than 50%, while parsimony methods should 
perform better when the  value is greater than 50%. The 
areas where the two methods have the greatest difference 
in performance are not linear with the amount of discor-
dance, but rather fall in regions with intermediate levels 
of discordance. In these parts of parameter space, the dif-
ference in minimum  between methods is as high as ap-
proximately 11%. This means, for example, that when 
is less than 50%, summary methods can tolerate an up 
to 11% higher rate of introgression than parsimony meth-
ods before the introgression tree becomes most common. 
In either case, little introgression is needed to “hide” the 
species tree when there is a lot of ILS in the species history. 

The results presented in this section suggest that, at 
least in the simplest three-taxon case, it may be difficult to 
distinguish between histories using gene tree frequencies 
or informative sites alone, even under relatively modest in-
trogression scenarios. Previous studies have proposed using 
the minimum average node height among gene tree topolo-
gies to distinguish the species history from the introgres-
sion history (Fontaine et al., 2015; Forsythe et al., 2020; 
Li et al., 2019). Using the same modelling framework as in 
the previous section, we evaluated the space over which the 
“minimum node height” criterion may be effective at infer-
ring the introgression history. We found that the minimum 
amount of introgression required to make the minimum av-
erage node height correspond to the history of introgres-
sion, rather than that of speciation, varied from 20% to 
approximately 40% (Figure 4). This variation depends pri-
marily on the timing of introgression relative to speciation, 
with more recent introgression resulting in less introgres-
sion required. The direction of introgression has little ef-
fect; Figure 4 shows the result for equal amounts of in-
trogression in both directions, while Supplementary Figure 
3 shows the pattern for each direction separately. As the 
species history approaches a star phylogeny, the necessary 
rate can fall below 20% and approaches 0 (but this is a rela-
tively small part of the parameter space). These results sug-
gest that the average minimum node height can be infor-
mative when the rate of introgression is high but will fail 
in large parts of parameter space. Overall, it seems unlikely 
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that any one feature alone will reliably help to identify one 
history over another. 

Figure 3. The minimum amount of the genome introgressing that is necessary to make gene trees (panel A) and site 
patterns (panel B) matching the introgression history the most common, as a function of values of  and . 
Values of  are given next to the contour lines. C) The difference in the amount of introgression necessary to affect site patterns vs. gene trees; obtained by subtracting the contour 
values in panel A (for gene trees) from those in panel B (for site patterns) (i.e. B minus A). D) Interpreting the axes in panels A-C. Each corner is labelled with the introgression sce-
nario that best describes that part of the parameter space, assuming a known speciation history of ((A,B),C). Note in the bottom two corners of panel D, the arrow is going from 
species B into species C, but very close to the time of B’s common ancestor with A. 

Supervised machine learning recovers the 
history of speciation with high accuracy 

     
      

Supervised machine learning is a powerful tool for data 
classification problems, and its applications in population 
genetics and phylogenetics are growing (Schrider & Kern, 
2018). Supervised machine learning methods can efficiently 
use multidimensional inputs to make accurate classifica-
tion of a dataset. Here, we made use of supervised machine 
learning for binary classification of the history of speciation 
in simulated datasets. We trained and tested five machine 
learning models for binary classification using scikit-learn 
(Pedregosa et al., 2011). We found that the supervised ma-
chine learning methods recovered the history of speciation 
with high accuracy, ranging from 76.3% for naïve Bayes to 
93.3% for a random forest classifier (Table 1). 

To understand which features were the most predictive 
of the correct species history across models, we conducted 
a permutation feature importance analysis as implemented 
in scikit-learn. This analysis randomizes individual features 
in the dataset one at a time and evaluates how this impacts 
the model’s predictive accuracy. Each feature is scored by 
the amount that prediction accuracy is reduced when that 
feature is randomized before fitting a model. We ranked 
each feature by its overall importance score summed across 
the five models. We found that most features (17/21) had 
significant importance scores in at least one model, and 

there was notable variation in the importance of features 
across models (Figure 5). Across models, the most predic-
tive features were the variances in coalescence times of the 
sister species in gene trees matching the two relevant his-
tories: i.e. the variance in time to coalescence of A and 
B in AB gene trees (AB_AB_var in Figure 5) and B and C 
in BC gene trees (BC_BC_var). The next four most impor-
tant features (in most models) were the node distances in 
those gene trees (AB_AB_dist and BC_BC_dist) and the fre-
quencies of the gene trees (AB_freq and BC_freq). The im-
portance of other features after these six is notably lower 
and varies between models. Four features did not have a 
significant importance score in any model: AB_AC_var, 
BC_AC_var, AB_BC_var, and BC_AB_var. See Supplementary 
Table 2 for complete descriptions of each feature. 

To further investigate which features had the most pre-
dictive power, we took advantage of the statistical prop-
erties of logistic regression to conduct stepwise model se-
lection using the Akaike Information Criterion. The final 
model contained 9 of the 21 features (Supplementary Table 
1), including 5 of the 6 most important features across 
machine learning models discussed in the previous para-
graph—the frequency of BC gene trees (BC_freq) was not 
included. Curiously, the variance in time to coalesce of A 
and B in BC gene trees (BC_AB_var) did not have a signifi-
cant importance score in any of the machine learning mod-
els, and yet was included by the stepwise selection proce-
dure. Aside from the omission of BC_freq and inclusion of 
BC_AB_var, this analysis was generally in agreement with 
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the feature permutation analysis about the most important 
features for distinguishing histories.

Figure 4. Distinguishing histories of speciation and introgression using the minimum gene tree node height. 
In blue areas, the minimum node height (averaged across all gene trees sharing a topology) is in gene trees matching the species history, while in orange it is in gene trees matching 
the introgression history. The boundary between the two denotes the minimum amount of introgression necessary to make the introgression history the one with the shortest node 
height. This minimum amount of introgression decreases as the species tree approaches a star tree (i.e. as  approaches 0) and as introgression becomes more recent relative to spe-
ciation (from top to bottom, tm values of 0.45, 0.3, 0.15, respectively). In most of parameter space, a significant amount of introgression is necessary, ranging from 20% (bottom) to 
40% (top). Patterns shown are for equal rates of introgression in both directions. 

Table 1. Performance of our supervised machine learning classifiers on simulated test datasets.            

Model Performance score on test set 

Logistic regression 0.792 

Support vector machine 0.913 

Gaussian Naïve Bayes 0.763 

Decision tree 0.878 

Random forest 0.933 

    
To help uncover general patterns that might be useful 

for distinguishing between competing histories in real 
datasets, we plotted the behavior of the six most important 
features discussed in the previous paragraph in each of the 
two histories in our simulated datasets (Figure 6). Each 
variable is plotted over the space of  values for each di-
rection of introgression and averaged across all values of 
and  within a value of . Generally, the gene tree with the 
lower variance in the time to first coalescence corresponds 
to the species history. This pattern remains true except 
when rates of introgression are very low (less than approx-
imately 5%) or very high (greater than approximately 75%). 
The consistency of this pattern across a wide range of pos-
sible  values partially explains why these features emerged 
as the most important in our machine learning models (Fig-
ure 5). The other features behave as expected from our 
theoretical results, with increasing rates of introgression 

decreasing the minimum node height and increasing the 
frequency of trees that match the introgression history. In 
general, the minimum node height corresponds to the in-
trogression history when the rate of introgression is higher 
than ~25%, and the most common gene tree matches the 
species history when the rate of introgression is less than 
50%, but there is significant deviation from these patterns 
depending on rates of discordance within each history, as 
well as the direction of introgression (Supplementary Fig-
ure 4). Nonetheless, the large differences in values between 
histories in most of the space makes these features highly 
informative together or when combined with other infor-
mation. 
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Figure 5. Model features (x-axis) ranked by importance score (color scale) across all our trained classification models (y-
axis). 
Lighter colors on the scale indicate a higher importance score for that feature. The importance score reports the degree to which accuracy is reduced in the fitted model when that 
feature is randomized (i.e. a score of 0.16 means prediction accuracy is reduced by 16%). In feature names, the first pair of letters indicate the gene tree topology, and the second pair 
indicate the pair of species within that gene tree topology, so the feature “AB_AC_dist” is the branch length distance between species A and C in gene trees where A and B are sister 
taxa. Four features are not shown which did not have a significant importance score in any of our trained models. 

PhyloNet accurately estimates edge weights 
for different histories despite low signal in 
gene tree frequencies 

     
       

   

While the machine learning results in the previous section 
provide possibilities for distinguishing histories of specia-
tion and introgression, they do not provide information on 
how much of the genome corresponds to each history. Phy-
logenetic network methods do not explicitly label histories, 
but they may nonetheless be able to accurately estimate the 
edge weights corresponding to these histories (one of which 
should correspond to ), in addition to correctly identify-
ing the paired lineage involved in introgression. These es-
timates may be especially useful in parts of the parameter 
space where gene tree frequencies do not correspond in-
tuitively to introgression probabilities. For example, in the 
bottom right space of Figure 3A-C, introgression proba-
bilities can be as high as 70% or more, though the gene 
tree matching the species history is still the most common. 
To assess edge weights, we simulated gene tree datasets 
with msprime and then passed them to the InferNetwork_ML 
method of PhyloNet (Yu et al., 2014). We asked whether 
the estimated reticulation edge weights for the edge cor-
responding to the simulated introgression history reflected 
gene tree frequencies or the true simulated rates of intro-
gression. 

In general, we found that PhyloNet’s estimated edge 
weights correspond to the actual proportions of speciation 
and introgression histories, rather than to gene tree fre-
quencies (Figure 7). We observed substantial variation in 

the frequency of BC gene trees, especially at high rates 
of introgression, where essentially any frequency is pos-
sible depending on the values of other parameters. This 
is especially true when introgression was from B into C: 
for example, with a rate of introgression of 90%, the av-
erage frequency of BC gene trees was only ~45%, with a 
large standard error (Figure 7, bottom right). This is in line 
with the theoretical results plotted in Figure 3A and 3B. 
Despite this, PhyloNet is generally able to accurately esti-
mate edge weights, with a nearly 1:1 correspondence be-
tween the simulated amount of introgression and the mean 
estimated amount (though there is also significant varia-
tion in these estimates). In addition, PhyloNet was almost 
always able to correctly identify species B as one of the 
lineages involved in introgression. An important caveat to 
these results, however, is that at very high rates of B into 
C introgression PhyloNet often failed to infer the presence 
of introgression at all, instead returning a bifurcating tree 
matching the history of introgression (Supplementary Fig-
ure 5). This occurred in approximately 20% of simulations 
at a simulated rate of 70%, and up to approximately 55% of 
simulations when the simulated rate of introgression was 
90%. Nonetheless, these results suggest that if the histories 
of speciation and introgression can be correctly identified, 
PhyloNet is generally able to accurately estimate what pro-
portion of the genome corresponds to each history. 
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Figure 6. Behavior of the six most informative features identified from our machine learning classifiers, for C → B / A → 
B introgression (depending on the underlying network model). 
Color denotes the true history of speciation underlying the simulated data, and the error bands (transparent areas) denote the standard error introduced by variation in  and 
within each value of  on the x-axis. A) The variance in the time to coalescence of A and B in AB gene trees (denoted AB_AB_var in Figure 5). B) The variance in the time to coales-
cence of B and C in BC gene trees (denoted BC_BC_var in Figure 5). C) The average time to coalescence of A and B in AB gene trees (denoted AB_AB_dist in Figure 5). D) The average 
time to coalescence of B and C in BC gene trees (BC_BC_dist in Figure 5). E) The frequency of AB gene trees (denoted AB_freq in Figure 5). F) The frequency of BC gene trees (denoted 
BC_freq in Figure 5). 

Figure 7. Ability of PhyloNet to estimate the proportion of the genome that has introgressed (top row) relative to 
observed gene tree frequencies (bottom row) when the true history of introgression is known. 
For each value of , estimates are grouped across all simulated values of  and . Individual points show outlier estimates; estimates of 0 are assigned when the species tree is in-
ferred with no reticulations and estimates of 1 are assigned when the introgression history is inferred with no reticulations. 
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Discussion  

Genomes often contain a complex mosaic of different re-
lationships among the same set of species. Understanding 
the historical processes that generate these different histo-
ries, such as speciation and post-speciation introgression, 
is critical to obtaining a complete understanding of the nat-
ural history of organisms. Here, we have used theory, sim-
ulation, and a supervised machine learning approach to 
show that while currently available approaches to species 
tree inference may often be misled in the presence of in-
trogression, it should be possible in principle to distinguish 
among these histories using the information contained in 
genome-scale datasets. By exploring the behavior of the 
most informative features in our machine learning models, 
in addition to highlighting the accuracy of edge-weight es-
timates in phylogenetic network approaches, we can now 
provide recommendations for future analyses and methods, 
as well as discussing the assumptions and limitations of our 
work. 

For the sake of tractability, our theoretical model (and 
simulation analyses) makes simplifying assumptions that 
have implications for patterns in genomic data. First, we as-
sume a single, discrete, post-speciation introgression event 
between one pair of non-sister taxa. There are a multitude 
of ways that real introgression scenarios could be more 
complicated, including multiple discrete events between 
different pairs of species, or continuous periods of gene 
flow rather than discrete pulses of hybridization. So long 
as introgression is primarily between one pair of lineages, 
the general patterns of genomic features we have reported 
here should hold, but the power of particular features to 
distinguish between different histories may be affected. Al-
ternatively, if other lineages are involved in introgression 
scenarios, this may affect gene tree patterns in ways that 
are not accounted for by our model. For example, intro-
gression between ancestral sister lineages can result in both 
discordant gene tree topologies becoming more common 
than the species tree topology, rather than just one (Jiao 
& Yang, 2021; Long & Kubatko, 2018; Solís-Lemus et al., 
2016). Additionally, introgression from a more distantly re-
lated ghost lineage can cause an incorrect history of intro-
gression to be inferred from available data (Tricou et al., 
2022), resulting in loci matching the “introgression his-
tory” having longer branches than expected. Lastly, intro-
gression events between multiple pairs of lineages will pre-
sent a more complex problem than simply distinguishing 
between two competing histories, as new histories are in-
troduced by each event; future work will be needed to ad-
dress such scenarios. 

Networks are sometimes thought of as consisting of a 
species tree-like backbone with edges added on (Francis & 
Steel, 2015), and some approaches to network inference fix 
this backbone to simplify estimation of other parameters 
(Flouri et al., 2020; Molloy et al., 2021). This backbone tree 
is also often visualized as the tree corresponding to the 
majority edge in a phylogenetic network. In introgression 
analyses, it is common to construct this backbone species 
tree using standard methods, which are then used to guide 

subsequent investigations. Our theoretical results suggest 
that standard methods for species tree inference will often 
fail to infer the correct species tree in the presence of in-
trogression (Figure 3). If levels of ILS in the species history 
are sufficiently high, very little introgression is necessary 
to mislead both summary gene tree (Figure 3A) and parsi-
mony (Figure 3B) methods into inferring the introgression 
history as the species tree (Eckert & Carstens, 2008; Long 
& Kubatko, 2018; Pang & Zhang, 2023; Solís-Lemus et al., 
2016; Zhu et al., 2016). We also found that sufficiently 
high rates of introgression can mislead network methods 
to infer the wrong backbone tree (Supplementary Figure 
5). This is important because both summary gene tree and 
parsimony approaches to species tree inference have been 
shown to outperform maximum-likelihood phylogeny in-
ference in the presence of discordance due to ILS (Mendes 
& Hahn, 2018; Mirarab et al., 2016) and are often applied to 
datasets with high rates of gene tree discordance. Even net-
work methods, which explicitly model ILS and introgres-
sion simultaneously, can fail to detect both histories at high 
rates of introgression. 

Very high rates of gene tree discordance, on the order of 
50-60% or higher, coupled with evidence of at least some 
introgression have been found in many empirical systems, 
including tomatoes (Pease et al., 2016), darters (MacGuigan 
& Near, 2019), butterflies (Edelman et al., 2019), mon-
keyflowers (Nelson et al., 2021), primates (Vanderpool et 
al., 2020), and suboscine birds (Singhal et al., 2021), sug-
gesting the problems identified here may be common. If an 
incorrect species tree or backbone tree is used for down-
stream analyses, introgression inferences involving the 
placement and directionality of the hybrid edge and esti-
mated inheritance probabilities will also be misled. In em-
pirical studies where species relationships are uncertain 
due to introgression, one classic approach has been to iden-
tify regions of the genome that are expected to be resistant 
to introgression. These can be genes directly involved in 
the evolution of reproductive isolation (“speciation genes”; 
Cutter, 2013; Ting et al., 2000; Zachos, 2009), or regions of 
low recombination. While multiple empirical studies have 
now demonstrated a positive correlation between recombi-
nation and introgression (Brandvain et al., 2014; Geraldes 
et al., 2011; Martin et al., 2019; Nelson et al., 2021; 
Schumer, Rosenthal, et al., 2018), it is often a weak rela-
tionship and may have limited predictive power in isola-
tion. Furthermore, genes involved in reproductive incom-
patibilities may be more likely to have discordant 
topologies due to ILS (R. J. Wang & Hahn, 2018), making 
them less informative for determining the species history. 

In addition to its implications for species tree inference, 
our model provides a cautionary note on the utility of gene 
tree frequencies in other introgression-related inferences. 
The frequency of gene trees matching the introgression 
history does not correspond neatly to the rate of introgres-
sion across the genome, owing to ILS at introgressed loci. 
This is highlighted by the fact that the D statistic (Green et 
al., 2010), a test based on gene tree frequencies, is a poor 
estimator of the rate of introgression (Hamlin et al., 2020; 
Martin et al., 2015). In addition, the lack of information 
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in gene tree frequencies complicates inferences of homo-
ploid hybrid speciation, a controversial process (Nieto Fe-
liner et al., 2017; Schumer et al., 2014; Schumer, Xu, et al., 
2018) in which hybridization is proposed to cause specia-
tion without a change in ploidy. One potential piece of evi-
dence for homoploid hybrid speciation is equal frequencies 
of the two most common gene tree topologies across the 
genome, which one might expect if reproductive isolation 
begins immediately in F1 hybrids. Our results show that it 
is possible to have two equally frequent majority gene trees 
at any rate of introgression (Figure 3), not only with 

=0.50 does not necessarily i
=0.50. 
mply 

that hybrid speciation has occurred, or that gene trees cor-
responding to the two histories occur at equal frequencies 
(Figure 7). This highlights the difficulty in devising tests for 
hybrid speciation based on only gene tree frequencies. For-
tunately, we found that PhyloNet accurately estimates the 
rate of introgression across parameter space of our model 
(Figure 7), demonstrating the utility of additional branch-
length information in estimating the amount of introgres-
sion. 

Our machine learning models, especially those based on 
decision trees, were able to classify the species history of 
simulated datasets with high accuracy (Table 1). This sug-
gests that it may be possible to build a similar classifier 
that can be applied to real datasets in cases where there are 
two competing histories in the data. However, one hurdle 
to developing such an approach is the necessity of generat-
ing simulated training datasets. These simulations require 
knowledge of demographic parameters that cannot neces-
sarily be accurately estimated if the histories of speciation 
and introgression are not known. One solution is to simu-
late over a large space of possible parameter combinations 
that covers the entire range of biologically plausible values, 
avoiding issues of extrapolation or model misspecification 
in empirical datasets, and then to build a classifier from 
this data for application to empirical data. Generating this 
training dataset would not be computationally prohibitive 
using standard coalescent simulation in the three-species 
case. Such a classifier could easily be applied to larger phy-
logenies if there is only a single introgression event; for 
multiple intogression events, it may be necessary to divide 
larger trees into a set of classification tasks for three-taxon 
subtrees. Similar simulation approaches to training ma-
chine learning classifiers have found success in application 
to real datasets for other introgression-related questions. 
For example, Schrider et al. (2018) identified introgressed 
loci in two Drosophila species by simulating genomic win-
dows and training a classifier on summary statistics. Bur-
brink and Gehara (2018) identified ancient introgression in 
the phylogeny of New World kingsnakes using a classifier 
trained on pairwise distance features obtained from sim-
ulated gene trees. One other possibility is to use unsu-
pervised or semi-supervised machine learning approaches, 
such as a generative adversarial network (e.g. Smith & 
Hahn, 2023; Z. Wang et al., 2021), to generate histories of 
speciation and introgression with gene tree features that 
most closely resemble those observed in the empirical data. 

Conversely, a value of 

Our feature importance analysis revealed general pat-
terns in genomic summary statistics that may be useful 
for distinguishing among histories. The behavior of the 
six most informative features is in line with expectations 
from our mathematical model and other previous work and 
demonstrates how these features can each reveal different 
pieces of information about the histories of the data (Figure 
6). The most useful features were the variances in coales-
cent times of sister taxa within gene trees, as they are in-
formative over a large part of the space of possible  val-
ues. Gene trees matching the introgression history tended 
to have a higher variance in coalescence times; this is con-
sistent with introgression introducing a more recent lower 
bound to coalescence, increasing the range of possible co-
alescence times. This lower bound also explains the infor-
mativeness of gene tree pairwise distances, which can take 
smaller possible values in gene trees matching the intro-
gression history. 

Nevertheless, no single feature is completely informative 
in all areas of parameter space. This observation explains 
why most of our features had significant importance scores 
in at least one model (Figure 5). The four features with no 
significant importance scores all involved the variance in 
the timing of the second coalescence event in gene trees; 
this quantity should not be directly predictive of the un-
derlying species history but may be marginally useful for 
inferring the direction of introgression within a network 
model, a signal that is likely highly correlated with other 
features in our dataset. Finally, the behavior of our model 
features suggests that machine learning approaches may be 
useful for other introgression-related inference tasks. For 
example, the simulated direction of introgression broadly 
affected the patterns observed in our simulated datasets 
(Supplementary Figure 3, Figure 6 vs. Supplementary Fig-
ure 4, Figure 7A vs 7B), so a classifier for the direction of 
introgression might have similarly high accuracy. These re-
sults highlight the power of machine learning to combine 
different pieces of information to make accurate predic-
tions. 

Overall, our work highlights the challenges of distin-
guishing between speciation and introgression histories, 
but also provides promising paths forward that may even-
tually lead to the development of methods for carrying 
out this task. While massive amounts of introgression may 
break down the distinctions between contemporary species, 
understanding the historical processes of speciation and 
hybridization underlying these lineages is still crucial for 
studying macroevolutionary processes such as speciation 
and extinction, as well as the evolution of traits over time. 
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