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Abstract  
Phylogenetic networks provide a means of describing the evolutionary history of sets of 
species believed to have undergone hybridization or gene flow during their evolution. 
The mutation process for a set of such species can be modeled asa Markov process 
on a phylogenetic network. Previous work has shown that a site-pattern probability 
distribution from a Jukes-Cantor phylogenetic network model must satisfy certain 
algebraic invariants. As a corollary, aspects of the phylogenetic network are theoretically 
identifiable from site-pattern frequencies. In practice, because of the probabilistic nature 
of sequence evolution, the phylogenetic network invariants will rarely be satisfied, even 
for data generated under the model. Thus, using network invariants for inferring 
phylogenetic networks requires some means of interpreting the residuals, or deviations 
from zero, when observed site-pattern frequencies are substituted into the 
invariants. In this work, we propose a method of utilizing invariant residuals and 
support vector machines to infer 4-leaf level-one phylogenetic networks, from which 
larger networks can be reconstructed. The support vector machine is first trained on 
model data to learn the patterns of residuals corresponding to different network 
structures to classify the network that produced the data. We demonstrate the 
performance of our method on simulated data from the specified model, a network 
model that includes the multispecies coalescent process, and primate data. 

Phylogenetic networks are directed acyclic graphs that 
aim to describe the evolutionary relationships among a set 
of taxa. Less restrictive than their tree counterparts, phy
logenetic networks have the flexibility to model gene flow 
and reticulation events such as hybridization and horizon
tal gene transfer. Due to this flexibility, phylogenetic net
works are becoming increasingly common in phylogenetic 
analysis, and new tools are needed for their inference. In 
this work, we approach the inference problem from an al
gebro-geometric framework, combining tools from compu
tational algebraic geometry and statistical learning. 

Currently, there is no consensus on the best method for 
inferring a phylogenetic network from genetic data. Thus, 
having multiple approaches to compare and contrast is 
helpful as new tools emerge. Many of the early approaches 
for inferring networks adapted procedures that had been 
successful for tree inference, such as maximum parsimony 
(Jin et al., 2007; Park et al., 2010) and neighbor-joining 
(Bryant & Moulton, 2004), or building networks from a set 
of smaller inferred trees (Baroni et al., 2005; Huber et al., 
2011; Nakhleh et al., 2005; Yang et al., 2014). More re
cently, distanced-based methods have shown some promise 
(Allman et al., 2022; Bordewich, Huber, et al., 2018; Bor
dewich, Semple, et al., 2018), as well as methods that in

corporate possible effects from incomplete lineage sorting 
using network extensions of the multispecies coalescence 
model (Kubatko & Chifman, 2019; Rabier et al., 2021; Solı́s-
Lemus & Ané, 2016; Wen et al., 2016; Yu et al., 2011; J. 
Zhu et al., 2018). The methods based on the network mul
tispecies coalescent model, such as SNaQ (Solı́s-Lemus & 
Ané, 2016), have had the most recent success, with many 
implemented in PhyloNet (Wen et al., 2018) for general use. 
However, issues such as scalability (Hejase & Liu, 2016) and 
the identifiability of certain features (e.g., 3-cycles) remain 
(Baños, 2019; Solı́s-Lemus & Ané, 2016). 

In this work, we take a model-based approach to in
ferring networks from observed site-pattern frequencies in 
aligned genomic sequences. Since our goal is to show the 
effectiveness of algebraic methods for network inference, 
we start with level-one network-based Markov models, also 
sometimes referred to as displayed-tree models. We also as
sume a Jukes-Cantor substitution process. The advantage 
of working with these relatively simple network models is 
that their algebraic properties are well understood (Gross et 
al., 2021; Gross & Long, 2018). Another advantage of these 
models is that the unrooted network topology is identifi
able from site frequency data, and the semi-directed topol
ogy is identifiable up to 3-cycles (i.e., we can not identify 
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the direction of edges a 3-cycle) (Gross et al., 2021; Gross & 
Long, 2018). 

Algebraic methods that use polynomials to distinguish 
between different underlying graph structures have a his
tory in phylogenetic reconstruction (Casanellas & Fernán
dez-Sánchez, 2011; Cavender & Felsenstein, 1987; Chifman 
& Kubatko, 2015; Lake, 1987; Rhodes et al., 2021), both at 
the genomic and genetic level. In these works, data in the 
form of site-pattern frequencies or gene tree distributions 
are substituted into distinguishing polynomials, referred to 
as phylogenetic invariants, and the resulting polynomial val
ues, or residuals, are used to select graph structures de
pending on the distance of the residuals from zero. How
ever, determining appropriate cut-offs for the residuals has 
been a challenge. Here, we show that statistical learning 
techniques can be used to interpret the residuals in the 
context of the network inference problem. 

Our method for inferring quarnets, Quarnet Network Re
construction using Support Vector Machines (QNR-SVM), 
has two parts: training and classifying. In the training part, 
we generate sequences of a fixed length according to all 24 
level-one quarnets. We then compute the site-pattern fre
quencies and transform the resulting values into Fourier 
coordinates (see Section 2.1). We then evaluate the 1126 
polynomials described in Section 2.2 on the transformed 
values. Finally, we train a support vector machine classifier 
on these points, which we use for classification. In simula
tions, the classifier performs well with approximately 
accuracy with sequences of length one million. Reducing 
the length of the sequences reduces the accuracy; how
ever, we still achieve 57% accuracy when using sequences of 
length one thousand. 

QNR-SVM focuses solely on 4-leaf level-one networks, 
that is, level-one quarnets. It has already been shown that 
it is theoretically possible to construct level-one networks 
from their quarnets (Huber et al., 2018; Iersel & Moulton, 
2014) Furthermore, more efficient puzzling techniques for 
reconstructing larger networks from smaller networks are 
quickly being developed (Huber et al., 2017; Huebler et al., 
2019). Thus, the ability to accurately infer level-one quar
nets provides the foundation for reconstructing level-one 
networks of arbitrary size. 

To close the introduction, we want to underscore some 
of the assumptions on which our method is based. First, 
the model does not account for incomplete lineage sorting. 
This contrasts with methods such as SNaQ and HyDe, which 
assume data are generated under a network mulitspecies 
coalescent model (Blischak et al., 2018; Chifman & Ku
batko, 2015). The model also assumes site independence 
and so does not capture linkage disequilibrium. 

Still, because it is so well understood from an algebraic 
standpoint (Gross & Long, 2018), this model is the logical 
starting point for exploring the use of computational al
gebraic geometry for network inference. Showing the ef
fectiveness of our method on a simplified model can help 
motivate further studies on the algebraic and geometric 
properties of more complicated network models along the 
lines of (Baños, 2019; Casanellas & Fernández-Sánchez, 

Figure 1. A level-one 9-leaf rooted binary phylogenetic 
network with three reticulation vertices highlighted in red 
and six reticulation edges distinguished by dotted lines. 

2021; Cummings et al., 2021; Hollering & Sullivant, 2021; 
Martin et al., 2023). 

1 Background   

We begin this section with an introduction to the basic de
finitions and terminology for phylogenetic networks. We 
then introduce the particular phylogenetic network model 
that underlies our method. Finally, we give a brief overview 
of support vector machines, the statistical learning ap
proach that forms the basis of our method. 

1.1 Level-one semi-directed networks     

Definition 1.1.  A rooted binary phylogenetic network  on 
a set of leaves  is a rooted acyclic directed 
graph with no edges in parallel (i.e., no multiple edges) sat
isfying the following properties: 

The vertices of in-degree two in a phylogenetic network, 
such as the red vertices in Figure 1, are referred to as reticu
lation vertices, and the level of a phylogenetic network is the 
maximum number of reticulation vertices in a biconnected 
component of the network. A biconnected subgraph is a 
subgraph that remains connected (in this case, weakly con
nected) under the removal of any vertex, and a biconnected 
component of a graph is a maximal biconnected subgraph. 
Each cycle, in the undirected sense, of the network in Fig
ure 1 is a biconnected component of the network. Since 
each biconnected component contains only a single retic
ulation vertex, the network is a level-one network. Edges 
directed into reticulation vertices are referred to as retic
ulation edges, while all other edges are referred to as tree 
edges. In Figure 1, the reticulation edges are marked by dot
ted lines. 

1. The root has out-degree two. 
2. The only vertices with out-degree zero are the leaves, 

and each of these have in-degree one. 
3. All other vertices either have in-degree one and out-

degree two, or in-degree two and out-degree one. 
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Figure 2. The four structures in the figure below include, from left to right: a level-one 4-leaf rooted binary phylogenetic 
network, the associated phylogenetic semi-directed network, and the two unrooted trees we obtain by deleting 
reticulation edges in the semi-directed network. 

Tree-based networks are networks obtained by starting 
with a rooted binary tree and successively adding edges 
from tree edge to tree edge. While it is known that not all 
phylogenetic networks are tree-based networks (Francis & 
Steel, 2015), level-one networks are tree-based networks. 

Given a binary phylogenetic network, if we undirect all 
non-reticulation edges of the network and suppress the 
root vertex, we obtain a phylogenetic semi-directed network; 
such graphs are called semi-directed graphs since some of 
the edges, in this case, the reticulation edges, are directed, 
while others are undirected. The set of phylogenetic semi-
directed networks are exactly those leaf-labeled semi-di
rected graphs that can be obtained in this way. As an ex
ample, Figure 2 shows a 4-leaf rooted binary phylogenetic 
network alongside its associated phylogenetic semi-di
rected network. The level of a phylogenetic semi-directed 
network is defined just as for a phylogenetic network as 
are the reticulation vertices and edges. These semi-directed 
networks are important for our purposes since the location 
of the root of the phylogenetic network parameter is 
unidentifiable from the site-pattern probability distribu
tions produced by the models we consider (Gross et al., 
2021, sec. 2.3). Thus, all of the information about a Markov 
model on a binary phylogenetic network is contained in the 
associated phylogenetic semi-directed network. 

Figure 3 represents all 4-leaf level-one binary phyloge
netic semi-directed networks. Beginning in the bottom row, 
we refer to these as trees, 3-cycle networks, 4-cycle networks, 
and double-triangle networks. In each of the 4-cycle net
works, the reticulation vertex is the large red vertex, and 
the reticulation edges are the two edges of the cycle di
rected into this vertex. For reasons of algebraic identifia
bility, which we discuss in Section 2.1, we do not show the 
reticulation edges on either the 3-cycle networks or dou
ble-triangle networks. Hence, each 3-cycle network shown 
represents three different phylogenetic semi-directed net
works that can be obtained by specifying the reticulation 
vertex in the 3-cycle of the graph. Each double-triangle 
network represents eight phylogenetic semi-directed net
works obtained by choosing the reticulation vertex in each 
triangle. Note that choosing the two adjacent vertices in the 
triangles to be reticulation vertices does not result in a phy

logenetic semi-directed network since there is no root loca
tion compatible with the necessary edge orientations. 

1.2 Network Models of Sequence Evolution       

The method we suggest in this paper is based on the un
derlying network-based Markov model of sequence evolu
tion described in (Gross & Long, 2018; Nakhleh, 2011). For 
a particular choice of parameters, a network-based Markov 
model returns a probability distribution on the -tuples of 
DNA bases that may be observed at a particular site in the 
aligned DNA sequences of a set of  taxa. Each of these 
site-pattern distributions in the network-based model are 
weighted sums of site-pattern distributions belonging to 
tree-based phylogenetic models. 

In a tree-based phylogenetic model, evolution is mod
eled as a -state Markov process proceeding along a rooted 
-leaf phylogenetic tree  with root , where each vertex 

of  is associated to a random variable . In this paper, we 
will be concerned specifically with models of DNA sequence 
evolution, and so we let  and identify the states with 
the set of DNA bases . Furthermore, since we 
will be concerned with quarnets, i.e., 4-leaf phylogenetic 
networks or semi-directed networks, we will also assume 

. 
Let  be the -dimensional probability simplex 

. 
A distribution in the tree-based Markov model associated 
with a tree  is given by specifying a root distribution, a vec
tor  defined by , and a Markov transi
tion matrix  with  to each 
edge  of . The transition matrices encode the proba
bility of mutations occurring along each edge of the tree. 
For phylogenetic analysis, we are particularly interested in 
the states at the four leaves of . These site-patterns are the 
-tuples of the DNA bases that we may observe in the 

aligned DNA sequences for a set of species. To compute 
the probability of observing a particular site-pattern at the 
leaves, we marginalize over all possible states of the non-
leaf vertices of . In particular, let 
be an assignment of states to the vertices of ; we can think 
of  as a vector of length  and use  to denote the 
state of . Let  be the restriction of  to the leaves 
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Figure 3. The poset of algebraically identifiable 4-leaf level-one phy-logenetic semi-directed networks. For the 4-cycle 
networks, the red dots represent reticulation vertices; for the 3-cycle networks the reticulation vertex is not identifiable. 
A line between two quarnets indicates that the ideal of the quarnet above is contained in the ideal of the quarnet below. 
For reference in the text and in the supplemental files, we number these networks from left to right and bottom to top so 
that the trees are numbered 1-3, the 3-cycle networks 4-9, the 4-cycle networks 10-21, and the double-triangle networks 
22-24. 

of . Then the probability of observing the 4-tuple 
 is 

Thus, a four-leaf tree  defines a map 
from the parameter space , which includes the parameters 
of the root distribution and the entries of the Markov tran
sition matrices to the set of probability distributions on 
the  possible site-pattens that may be observed at 
the leaves of . The model associated to T is defined to be 

. A key observation from algebraic statistics 
that will allow us to use algebraic methods is that the map 

 is a polynomial map in the parameters of the model. 
Similar to tree-based models, a phylogenetic network 

model on a 4-leaf phylogenetic level-one network  de
fines a polynomial map  from the para
meter space of the network model to the set of site-pattern 
distributions. Again, similar to tree models, the parameter 
space includes a root distribution and a Markov transition 
matrix associated to each edge of the network. However, for 

a phylogenetic network model with  reticulation vertices 
, there are  additional parameters  for 
. In the case of level-one quarnets, the number of 

reticulation vertices  is at most two. 
Each parameter  is arbitrarily associated to one of the 

reticulation edges , directed into . The pattern of inher
itance at  is directed through the edge  with probability 

 and through the other reticulation edge  with probabil
ity  Thus, to produce a site-pattern from the net
work model, for each  we independently select ei
ther  with probability , or  with probability , 
and remove the selected edge. After removing one of each 
pair of reticulation edges in a level-one phylogenetic net
work, the result is a -leaf phylogenetic tree with the orig
inal leaf set. A site-pattern probability distribution can be 
obtained from this tree-based model, as described above. 
Therefore, the map  can be described as a weighted sum 
of the maps associated to the  trees obtained by deleting 
one of each pair of reticulation edges. The model associated 
to N is defined to be . We note that network-
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based Markov models are strict submodels of phylogenetic 
mixture models (Elizabeth S. Allman et al., 2012; Matsen 
et al., 2008). In the former, if two edges from the  trees 
in the mixed distribution correspond to the same edge in 

, then their associated transition matrices are the same 
along each edge, whereas in the latter, the transition matri
ces may differ. 

For tree-based and network-based Markov models in 
phylogenetics, it is quite common to simplify the model by 
adding constraints on the transition matrices. Such con
straints reduce the dimension of the parameter space and 
the dimension of the images of  and . In this paper, 
we will assume the 4–state Jukes-Cantor model of DNA se
quence evolution in which the root distribution is assumed 
to be uniform, and each Markov transition matrix has the 
form 

for some . The  parameter in the Markov transi
tion matrix along a particular edge encodes the confounded 
effects of time and mutation rate along that edge. Thus, 
branch lengths are often given in terms of expected number 
of substitutions per site. These are the units used by the 
function seqgen from the  package , which we use 
to generate sequences. In these units, an edge of length 
corresponds to 

Because the Jukes-Cantor model is time-reversible, the 
root in either a tree or network-based Jukes–Cantor model 
cannot be identified (Felsenstein, 1981; Gross et al., 2021; 
Gross & Long, 2018). Consequently, for rooted networks 
and , the models  and  will be equal if  and 

 yield the same phylogenetic semi-directed network after 
unrooting. Therefore, given data produced by a Jukes-Can
tor phylogenetic network model, it is only possible to re
cover the phylogenetic semi-directed network obtained by 
unrooting the network parameter (Gross & Long, 2018). For 
this reason, we define the models using phylogenetic semi-
directed networks (as in Example 1.2) and work only with 
these structures for the rest of the paper. 

Example 1.2.  For the Jukes-Cantor phylogenetic model 
on the 4-leaf binary phylogenetic network depicted in Fig
ure 2, the parameters of the model include the lengths of 
the edges and the two reticulation edge parameters,  and 

. As noted above, the root location of the phyloge
netic network is not identifiable. Thus, we can equivalently 
construct the model by assigning edge lengths and reticu
lation edge parameters to the semi-directed network shown 
in the same figure. The site-pattern probability distribution 
from the network will then be a weighted sum of the two 
site-pattern probability distributions coming from the tree-
based Markov model with the edge lengths shown on the 
two trees at the right in the figure. The weight of the dis
tribution from the left tree will be , and the weight 
from the right tree will be . 

1.3 Phylogenetic Network Invariants     

There has been much work previously on identifying phy
logenetic invariants for Markov models of DNA sequence 
evolution (Allman & Rhodes, 2007). The phylogenetic in
variants for a tree-based Markov model on a tree  are 
the polynomials that vanish on the model . That is, 
letting  be the set of leaf labels for  and letting 

, they are the polynomi
als contained in the ring 

that evaluate to zero when the entries of any site-pattern 
probability distribution from the model are substituted. 
The set of all such polynomials that vanish on the model 

 is the ideal 

which is called the ideal of phylogenetic invariants for . 
One motivation for computing these ideals is that they 
can be used to show that the models for different trees 
are not contained in one another. For example, showing 

 proves the reverse non-containment for the mod
els, . This observation has been used to show 
that the tree parameter of several tree-based Markov mod
els is generically identifiable. That is, for a generic proba
bility distribution coming from a tree-based Markov model, 
it is possible to recover the tree parameter(s) of the model 
(e.g., Allman et al., 2011; Allman & Rhodes, 2006; Rhodes 
& Sullivant, 2012). 

In the same manner as for trees, we can consider the 
ideal of phylogenetic invariants for the network , the set 
of all polynomials that vanish on the model . In (Gross 
& Long, 2018) and (Gross et al., 2021), the ideals for several 
small networks were computed in order to show that the 
network parameter of certain network-based Markov mod
els is identifiable. This approach to establishing identifi
ability also suggests a method for phylogenetic inference. 
Specifically, suppose we have shown that for two networks 

 and  that  and . Then, if the net
work parameter is generically identifiable, given a generic 
site-pattern probability distribution  from either  or 

, the distribution  belongs to only one of these mod
els. We can then substitute  into a set of polynomials that 
generate  and a set of polynomials that generate . 
The result will be zero for every polynomial in the gener
ating set of the ideal of the network with model containing 
, and non-zero for at least one of the polynomials in the 

ideal of the network with model not containing . 
Theoretically, this same principle should allow us to in

fer phylogenetic networks from the observed site-pattern 
probability distributions coming from the aligned DNA se
quences of a set of species. In practice, none of the phy
logenetic invariants for any network are likely to evaluate 
to zero on observed data. This is not just because of the 
simplifying assumptions in our models. Even if we simulate 
from a network-based Markov model to obtain an observed 
site-pattern probability distribution, because the models 
are stochastic, we are likely to get small non-zero values 
when we substitute the entries of this distribution into the 
phylogenetic network invariants. Thus, using network in
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variants for inferring phylogenetic networks requires some 
means of interpreting the residuals, or deviations from 
zero, when observed site-pattern frequencies are substi
tuted into the invariants. 

One approach to doing this is to compute a score for 
each possible network by adding up the absolute value of 
the residuals of the invariants in a generating set for the 
ideal of the network. The inferred network would then be 
the one with the lowest score. This approach was used 
to infer phylogenetic trees in (Casanellas & Fernández-
Sánchez, 2006; Ruskino & Hipp, 2012), though it is unlikely 
to be successful in our case. Those works considered only 
quartet trees, which all have the same unlabeled topology. 
This allows for a direct comparison of the computed scores 
since the generating sets of invariants used are related by a 
permutation of the variables. However, in our case, we re
quire invariants for quarnets with four distinct unlabeled 
quarnet topologies (the different rows in Figure 3). It is un
clear how one would compare scores for quarnets in differ
ent rows using different numbers of invariants of different 
degrees and with differing numbers of terms. 

A more refined strategy for addressing this problem 
would be to apply statistical learning techniques to learn 
the patterns of residuals from observed phylogenetic data. 
However, this is not possible since there is a need for more 
reliable labeled data from which to learn. Yet another ap
proach would be to derive expressions for the distribution 
of invariant residuals, assuming a certain phylogenetic net
work model of evolution. After all, for a fixed choice of 
model parameters, the invariants are polynomial functions 
of random variables. However, this would require specifying 
a prior distribution on the numerical parameters of the net
work models. Moreover, the number of variables involved 
and the correlation between them makes this infeasible. 

For these reasons, we propose a method using support 
vector machines and random sampling to interpret the in
variant residuals. We begin by constructing a set of invari
ants  that distinguishes between all twenty-four level-one 
quarnets as shown in Figure 3. We then sample from a large 
region of the numerical parameter space for each quarnet 
model. The labeled sampled data is then transformed and 
substituted into , and we train support vector machines on 
the invariant residuals. The support vector machines can 
then be used to infer quarnets for observed biological data. 
As previously noted, since all level-one phylogenetic net
works can be constructed from their quarnets; this method 
can be paired with any method for constructing level-one 
networks from quarnets to infer level-one networks of arbi
trary size. 

1.4 Support Vector Machines     

Our method relies on constructing a support vector ma
chine (SVM), a supervised learning model, for classifying 
the invariant residuals. We provide here a brief overview of 
SVMs adapted from (James et al., 2013) and refer the reader 
there for more details. 

A linear support vector machine uses separating hyper
planes for classification. In the simplest case, the training 
data consists of observations in a Euclidean space, each la

beled as belonging to one of two classes. If the training data 
are separable, then there exists a hyperplane that perfectly 
separates the data so that the observations belonging to 
each class live on opposite sides of the hyperplane. In such 
a case, the separating hyperplane chosen is the maximal 
margin classifier, which is the separating hyperplane that 
maximizes the distance to the nearest point in the training 
data. Once the hyperplane is determined, new observations 
can be easily classified by determining on which side of the 
hyperplane they reside. 

Of course, it is often not the case that the data used to 
train an SVM are perfectly separable. In these cases, the 
maximal margin classifier does not exist, and instead, we 
seek a soft margin classifier. A soft margin classifier is again 
a hyperplane trained on the data; however, since the data 
are not separable, it will necessarily misclassify some ob
servations in the training data. The soft margin classifier 
is determined by choosing the hyperplane that best sepa
rates the training data according to some optimization cri
teria. Only now, when determining the optimal soft margin 
hyperplane, is a cost incurred for each misclassified obser
vation, and the total allowable cost must remain below a 
chosen threshold. For example, if the allowable cost were 
zero, then the soft margin classifier would only exist if the 
data were perfectly separable, and in that case, it would be 
the maximal margin hyperplane. As is typical with statisti
cal modeling, the cost parameter reflects a tradeoff between 
bias and variance, and the optimal cost is typically deter
mined through cross-validation on the training set. 

Two other issues distinguish most applications of SVMs 
from the simple case of two separable classes that we out
lined above. The first issue is that even a soft margin clas
sifier will only be effective at classifying new observations 
if the boundary between each pair of classes is approxi
mately linear. However, it is easy to imagine applications 
where this is not the case. Consequently, SVMs are often 
constructed using kernels, which transform the original ob
servations, possibly by embedding them in a higher dimen
sional space. 

Non-linear decision boundaries in the original space can 
be represented as linear decision boundaries defined by hy
perplanes in the transformed space. The second issue is 
that we may have observations belonging to one of several 
classes, rather than just two. There are a few ways to ad
dress this issue, one of which is the “one-versus-one” ap
proach, which we use below. In this approach, given data 
belonging to  different classes, we construct  hyper
planes, one for each pair of classes. New observations are 
then classified by allowing each hyperplane to “vote,” and 
the ultimate classification is the class that receives the 
most votes. 

In our application, the observations are vectors of in
variant residuals obtained by sampling from a network-
based Markov model. Each observation has a label from 
the set  based on the equivalence class of the 
semi-directed network that produced the observation. To 
build the SVM and classify points, we use the R package 
e1071 (Meyer et al., 2019). By default, this package uses a 
one-versus-one approach to classify new observations. We 
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tune the cost parameter by trying several different values 
and evaluating the accuracy. Using residuals from a care
fully constructed set of invariants, our data are already 
transformed in a way designed to separate the classes theo
retically. Specifically, when comparing two quarnets, some 
of the coordinates correspond to distinguishing invariants 
for the two corresponding quarnets. We thus expect some of 
these coordinates to be near zero for one quarnet and non-
zero for the other. Theoretically, the distinguishing invari
ants will be near zero for one quarnet and will lie above and 
below zero for the other in a way that makes a linear deci
sion boundary a poor choice. However, this is not what we 
observe in practice, and typically the invariant residuals are 
near zero for the “correct” quarnet and bounded away from 
zero for the other. Thus, we have found that a linear kernel 
is effective on these transformed coordinates, which we use 
in the simulations below. 

While one could apply several different supervised learn
ing methods to the classified invariant residuals, support 
vector machines have a few properties that make them par
ticularly appealing for this purpose. For one, they have an 
intrinsic geometric interpretation. Since we are viewing the 
phylogenetic network inference problem from an algebra-
geometric vantage point, this may prove useful for further 
investigation. For example, the coefficients of the SVM hy
perplanes may offer clues as to the relative importance of 
invariants for separating different models. Moreover, us
ing results from (Lin et al., 2007), (Platt & others, 1999), 
and (Wu et al., 2003), one can modify this method to re
turn probabilities for each class rather than a classification. 
This may be useful for developing methods for construct
ing larger networks from quarnets using a weighted quar
net scheme similar to those for trees (KS & Haeseler, 1996; 
Ranwez & Gascuel, 2001). 

2 Constructing A Distinguishing Set      
of Phylogenetic Network Invariants     
for Jukes–Cantor Quarnets    

As noted previously, our analysis will focus on inferring 
level-one quarnets, or 4-leaf semi-directed networks, since 
these can be used to build larger networks. We will also as
sume that the underlying DNA substitution process is the 
4-state Jukes-Cantor model. In order to apply the invari
ants based inference method described in the previous sec
tion, we first need the following definition. 

Definition 2.1 . Let  be a set of phylogenetic networks 
and  a phylogenetic model. A set  is a distinguishing set 
of invariants for  under , if for all , there ex
ists a polynomial invariant  in the vanishing ideal of  or 

, but not both. 
Thus, our first step is to construct a set of invariants 

that is a distinguishing set of invariants for the set of quar
nets under the Jukes-Cantor model. 

2.1 Generating sets of network ideals and        
distinguishing invariants   

Generating sets for the vanishing ideals of all level-one 
quarnets with a single cycle are known from (Gross & Long, 
2018) and those of the three level-one quarnets with two 
reticulation vertices (the double-triangle networks) from 
(Gross et al., 2021). The computations for these ideals are 
contained in the supplemental materials of those works. 

The ideals are computed in a set of transformed coordi
nates. For quarnets under the Jukes-Cantor model, the ring 
of transformed coordinates is the ring of -coordinates, also 
referred to as Fourier coordinates, 

These -coordinates are computed from the probability co
ordinates as follows. Letting  be the matrix 

with rows and columns indexed by  and , 

where the index is over all 
This linear change of coordinates, called the Fourier trans
form, was introduced in (Evans & Speed, 1993) and is com
mon in phylogenetics when considering group-based mod
els, such as the Jukes-Cantor model, because it simplifies 
the description of the models. For example, for group-based 
tree models, after applying the Fourier transform to both 
the domain and image spaces of the map , the ideal 
is generated by binomials in the -coordinates. The details 
of the transform and group-based models are not partic
ularly relevant to our analysis, so we refer the interested 
reader instead to (Evans & Speed, 1993; Sturmfels & Sul
livant, 2005). For our purposes, the most important point 
is that since our invariants are expressed in the -coordi
nates, we will need first to transform the observed site-pat
tern frequencies using (1). 

Due to the symmetry of the Jukes-Cantor model, we will 
only need to compute part of the vector of 256 -coordi
nates. This is because there are a number of site-patterns 
that are predicted to appear with the same frequency re
gardless of the network or tree parameter of the model. 
For example, because the substitution rate between all sites 
is the same under the Jukes-Cantor model, site-pattern 
probability distributions from every network will satisfy 

. Put another way; this is a linear invariant 
in the probability coordinates that is contained in the ideal 
of every quarnet. This symmetry in the probability coordi
nates simplifies the resulting -coordinates. For example, 
128 of the -coordinates are identically zero for every site-
pattern probability distribution contained in a Jukes-Can
tor model. Moreover, many of the other non-zero coordi
nates are identical. Working modulo these linear invariants, 
we can express the ideals for each of the quarnets in the 
ring contains only the following 15 variables, 
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The equivalence classes of these variables are listed in the 
catalog of Small Phylogenetic Trees (Garcia-Puente, 2007) 
under the Jukes-Cantor model for a 4-leaf unrooted tree. 
Note that the catalog assumes the additional symmetries of 
a particular tree, and so the equivalence classes of 
and  as well as those of  and  are com
bined. 

Computing the vanishing ideals for each level-one quar
net under the Jukes-Cantor model reveals an obstacle to 
computing a set of distinguishing invariants. First, as ob
served in (Gross & Long, 2018), there are many level-one 
quarnets with identical ideals. Specifically, two 3-cycle net
works or two double-triangle networks with the same undi
rected skeleton have the same vanishing ideal under the 
Jukes–Cantor model. For example, consider the 4-leaf 
rooted binary phylogenetic network pictured in Figure 2. If 
we were to switch the leaf labels  and  in this network, the 
undirected skeleton of the associated phylogenetic semi-
directed remains unchanged. The same is true if we instead 
switch the leaf vertex labeled by  and the cherry labeled by 

 in the original network. 
It may be that the Markov models built on these three 

distinct phylogenetic semi-directed networks are in fact 
identical. It is also possible that they are distinguishable in 
some way; for example, they may satisfy certain inequali
ties or non-polynomial invariants. For these reasons, when 
we generate samples for the 3-cycles and double-triangles 
networks, we randomly choose one of the valid orientations 
for the reticulation edges. Still, since our method is based 
on theoretical results with polynomial invariants, we will 
only ever attempt to infer undirected 3-cycles. Thus, from 
this point forward, when we refer to quarnets, we refer to 
the 24 distinct topological structures depicted in Figure 3. 

We also note that even among the quarnets depicted in 
Figure 3, the ideals of some quarnets are properly contained 
in the ideals of others. This containment is encoded in the 
figure, where a line between two quarnets indicates that the 
ideal of the quarnet above is contained in the ideal of the 
quarnet below. Thus, it is impossible to form a distinguish
ing set that contains an invariant that belongs to the van
ishing ideal  but not to  for all quarnets  and . 

Recalling that the containment of ideals is reverse to the 
containment of models, some of the above results come as 
no surprise. For example, it is clear that adding a reticu
lation edge to a tree results in a model on a 3-cycle net
work that must contain the tree model. This follows since 
any distribution from the tree model can be obtained from 
the 3-cycle network model by setting one of the reticulation 
edge parameters to 0 and the other to 1. Likewise, we would 
expect the models of the 3-cycle networks to be contained 
in the models of the double-triangle networks formed by 
adding an extra reticulation edge. However, it is perhaps 
more surprising that the models of the 3-cycle networks 
are contained in models for 4-cycle networks. This is not 
the case for the Kimura 2-parameter or Kimura 3-parameter 
model, so this appears to be a feature of the Jukes-Cantor 
model rather than a feature of the quarnets (Gross et al., 
2021). 

Figure 4. Plot of two invariant residuals in  as 
varies for ten randomly chosen, fixed assignments of edge 
lengths to . 

This is the reason that our definition of a distinguishing 
set of invariants for  requires only that for every pair 
of quarnets,  and  in , the distinguishing set con
tains an invariant that belongs to either  or , but not 
both. For example, consider the triangle quarnet  and 
the 4-leaf tree  with . If , then for a 
generic probability distribution  contained in either 
or ,  if  and  if . In
deed, this is the basis of using invariants for inference. 

Example 2.2.  The graph in Figure 4 shows the residuals 
of two invariants contained in . Each “loop” corre
sponds to a network obtained by randomly assigning edge 
lengths (between  and ) to the 4-leaf semi-directed 
network depicted in Figure 2. Each point represents the 
-coordinates of a theoretical site-pattern probability dis

tribution in the model  evaluated at the two invariants 
as the reticulation edge parameter  on the edge labeled 
by  goes from 0 and 1. Hence, the loops start and end 
at the origin, since site-pattern probability distributions in 
the model  corresponding to reticulation edge parame
ters of 0 or 1 are also contained in the model 

Example 2.3.  The data in Figure 5 correspond to 100 
DNA sequence alignments of  sites for each taxon. Half 
of the sequence alignments were sampled from a site-pat
tern probability distribution in  and half from a site-
pattern probability distribution in . We randomly se
lected the model parameters for sampling using the 
methods described in Section 3.1. 

In each of the plots, the plotted points correspond to the 
residuals of two different invariants and the colored regions 
correspond to the decision boundary of the SVM trained on 
the plotted data. The invariant residuals shown in Figure 5 
(A) are from two invariants in  that distinguish these quar
nets (i.e., they belong to ). The invariant residuals 
shown in Figure 5 (B) are from two invariants in  that do 
not distinguish these quarnets since they each vanish on 
both models (i.e., they belong to ). 
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Figure 5. These figures show the SVM regions using the residuals of two invariants. The training data consists of 
sequences sampled from site-pattern probability distributions in  and . 

The theoretical basis for our method is depicted in Fig
ure 5 (A). The distinguishing invariants are much better 
able to distinguish between the two quarnets when com
pared to the invariants contained in both ideals. We quan
tify this by applying these SVMs to an independently gener
ated test set of  samples for  and  samples for . 
The accuracy of the model trained on distinguishing invari
ants is 92.25% compared to 51.25% for the model trained on 
invariants belonging to both ideals. Though not shown, we 
also applied the same method with two invariants in  that 
do not belong to either ideal. Even though there is no the
oretical basis for these invariants to perform well, it would 
not be surprising if some polynomial transformations of the 
data had some power to distinguish between quarnets. In 
this case, the accuracy was 53.00%–slightly better than the 
two invariants contained in both ideals (as shown in Figure 
5 (B)) but still less than those that theoretically distinguish 
the network. 

Different pairs of invariants may behave differently, but 
to illustrate the principle, we chose pairs of invariants of 
low degree (so that the residuals were relatively large) that 
were uncorrelated (so they did not contain the same infor
mation). To do this, we converted  to a list and selected 
the first five low-degree invariants of each type from . For 
each type, we selected the pair of invariants with the lowest 
absolute correlation of the residuals in the training set. 

2.2 Permutation Invariance    

So far, we have specified only that the set  be a distin
guishing set. However, it is an open question in phyloge
netics as to which invariants are the most effective for in
ferring phylogenies. One way to construct a distinguishing 
set is to find a generating set of each quarnet ideal and 
then take the union of these sets of polynomial invariants. 
This still leaves many possible options for the distinguish
ing set since the generating set of an ideal is not unique. 

The computer algebra systems used to compute vanishing 
ideals return generating sets that satisfy nice mathematical 
properties, such as being minimal generating sets or being 
Gröbner bases with respect to certain term orders. These 
properties do not, however, have a clear biological interpre
tation and may not be well suited for distinguishing phylo
genetic models. 

A desirable property of any phylogenetic inference algo
rithm is that it is invariant under permutations of the data. 
That is, if the algorithm returns network  for input , then 
it should return network  for input . As an exam
ple, suppose we input the set of aligned sequences for taxa 

 in that order into a phylogenetic inference algo
rithm and that the algorithm returns , the 4-cycle net
work at the far left in Figure 3. This indicates that taxon 

 is a hybrid of taxa  and . Now suppose that instead 
we input the aligned sequences in the order . Since 
the relationship between the taxa has not changed, we ex
pect the algorithm to return , indicating that the fourth 
taxon ( ) is a hybrid of the first and second taxa (  and 
in the new ordering). 

This issue for invariants-based algorithms was first iden
tified and addressed in the case of tree invariants in 
(Ruskino & Hipp, 2012). In order to ensure that our al
gorithm is also invariant under permutations of the data, 
we adopt a similar approach and construct  itself to be 
permutation invariant as we define below. Before we define 
this concept more formally, we need two small pieces of 
notation. One, for  and a variable , 

. And two, for a polynomial 
,  is the 

polynomial that results from applying  to every variable in 
. As an example, let 

and let  be the transposition . Then 
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Figure 6. Applying all 24 possible label permutations to any of the trees below results in 24 trees, eight of which are 
topologically identical to the original. However, doing the same to either of the 4-cycles below results in 24 quarnets, 
only two of which are topologically identical to the original. Note that although the permuted quarnets are topologically 
identical, they have different branch lengths and hence correspond to different theoretical site-pattern probability 
distributions. 

Figure 7. Confusion matrix for 4800 test observations, 200 for each quarnet. The true quarnet labels for the simulated 
observations are listed along the bottom of the plot, while the predicted quarnet labels are listed along the left side of 
the plot. A 200 in a diagonal entry means that 100% of the points sampled from the corresponding quarnet were 
classified correctly. 

Definition 2.4.  A set of polynomials 

is permutation invariant if for any permutation  in  and 
any , . 

In order to construct a permutation invariant set of dis
tinguishing invariants, we first let  be the union of gen
erating sets for the ideals of the quarnets , , , 
and . That is, we include in  polynomials sufficient 

to generate the ideal for one quarnet from each row of 
Figure 3. We then apply a permutation  to all of 
the polynomials in , and add these polynomials to . 
We repeat this process until  is permutation invariant 
(which occurs after applying just the six transpositions in 

). Note that we still embed our distinguishing set in the 
ring of -coordinate equivalence classes from (2). For ex
ample, if we determine 
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should be in , then we replace  and  by their 
equivalence class representatives and add the polynomial 

 to 
The set  we construct contains polynomials sufficient 

to generate the ideal for every quarnet in Figure 3. This is 
because applying a permutation to a generating set for the 
ideal of a quarnet produces a generating set for the ideal of 
another quarnet in the same row. This implies that  is a 
distinguishing set. We have already shown that if  and 
are any two of the 24 quarnets, then without loss of gener
ality, we may assume that . It follows then that any 
generating set of  contains a polynomial , 
and so  is a permutation invariant distinguishing set as 
desired. The set  contains 1126 polynomials and is avail
able in the supplemental materials in a text file which can 
be read into Macaulay2. Each line of this text file is a sepa
rate invariant , and all specific invariants referenced herein 
are referenced by line number. 

Constructing such a sizeable distinguishing set increases 
the run time of our algorithm, particularly in the construc
tion of the support vector machines. However given the 
theoretical and practical implications of potentially return
ing different answers to an inference problem given equiv
alent inputs, we deemed the increase in run time from in
sisting  be permutation invariant worth the cost. Note that 

 is not the smallest permutation invariant distinguishing 
set we could construct. For one, we could reduce the size of 

 by beginning with a minimal generating set for the ideals 
, , , and . Moreover, it is not even strictly neces

sary for  to contain generators of every ideal in order for it 
to be a distinguishing set. For example, we could construct 
a distinguishing set that contains just a few invariants (at 
most ), and then expand this set until it is symmet
ric. However, previous results have shown that some invari
ants perform much better than others at distinguishing be
tween phylogenetic structures from data (Casanellas et al., 
2015; Casanellas & Fernández-Sánchez, 2011). A priori, it 
is unclear which invariants will perform best, and it may be 
that certain invariants perform better than others at distin
guishing between quarnets over different regions of para
meter space. For these reasons, we chose to include a large 
number of invariants in ; which invariants are important 
is determined through the training process and the con
struction of the support vector hyperplanes. 

3 Quarnet Network Reconstruction     
using Support Vector Machines (QNR-    
SVM).  

We call our invariants-based algorithm for inferring phy
logenetic networks Quarnet Network Reconstruction using 
Support Vector Machines (QNR-SVM). The algorithm takes 
as input the aligned DNA sequences for a set of four taxa, 
and then uses support vector classifiers to classify the input 
data as belonging to one of the 24 quarnet models. The al
gorithm is implemented in R, and the output is the quarnet 
associated with this model. In this section, we describe this 
algorithm in further detail by first describing the training 

data and the process used to construct the support vector 
classifiers. 

3.1 Training the Support Vector Machine       

In order to construct a point in our training data set, we be
gin by sampling a site-pattern probability distribution from 
a quarnet model. For a fixed quarnet , a site-pattern prob
ability distribution  is determined by the numerical 
parameters of the model, which include the edge lengths 
of the quarnet, and for all quarnets that are not trees, the 
reticulation edge parameters. 

For a fixed quarnet, we select each of the reticulation 
edge parameters uniformly at random from the closed in
terval . We select edges uniformly at random 
from one of two different intervals. If the edge is adjacent 
to a degree-2 vertex in a displayed tree of the quarnet, we 
use , and if it is not, then we use . We use 
different intervals for these edges to ensure that sampling 
from a network with a reticulation edge parameter set to 0 
approximates sampling from a quarnet without that retic
ulation edge. This way the distributions for each nested 
chain of quarnets lie roughly in the same region of proba
bility space. To see why this is desirable, consider the 3-cy
cle network pictured in Figure 2 and the displayed tree con
structed by removing the reticulation edge . The central 
edge of this tree is the concatenation of edges  and , and 
so it could be twice as long as the maximum edge length in 
the interval. Thus, if we sampled these edges from the same 
interval we used to sample edges of the tree , then 
on average, this network would reflect greater distances be
tween taxa on opposite sides of the split  than would 
the tree. Thus the low accuracy risk of the SVM classifying 
based on this feature of the data rather than on the topol
ogy of the underlying quarnet. 

We selected this branch length range so that the dis
played quartet trees have branch lengths for which invari
ants-based and classical gene tree estimation methods re
construct the associated trees with very high probability 
(see, for example (Fernández-Sánchez & Casanellas, 
2016)). Thus, we focus on distinguishing among networks 
rather than the well-documented challenges of phyloge
netic inference in the presence of extremely short or long 
branches. 

Once the choice of numerical parameters is made, we 
sample a DNA sequence alignment from the model con
sisting of  sites for each taxon using the function 
gen.seq.HKY (which calls the function seqgen) from the R 
package phyclust (Chen, 2011). As noted previously, a 
branch length  in this function corresponds to a value of 

 in the Jukes-Cantor transition matrix 
on an edge. Note that we do not scale edges to model dif
ferent rates across sites, so if two sites are generated by the 
same displayed tree of the network, then they are generated 
on identical trees with the same branch lengths. 

We next convert the alignment to a length 256 empirical 
site-pattern probability distribution. Then, we average over 
Jukes-Cantor equivalence classes so that entries in the 
same equivalence class are equal. This step is necessary for 
our method to be permutation invariant since we use equiv
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alence class representatives of the -coordinates. Finally, 
the resulting distribution is converted to -coordinates us
ing Equation 1 and these 15 entries are substituted into the 
invariants in  (with a fixed ordering). The result is a vector 
of length 1126 labeled by the quarnet. 

Instead of repeating this process for each quarnet, we 
fix one representative of the four unlabeled quarnet topolo
gies. After the aligned DNA sequences are generated, we 
permute the sequences by each of the 24 permutations in 

. The resulting sequences are then converted into length 
1126 vectors as described and labeled with the quarnet ob
tained after applying the same permutation to the leaf la
bels. As a result, the entire set of training data is also in
variant under permutation of the -coordinate indices, a 
condition that ensures our algorithm is permutation invari
ant. 

Each independent sample from each of the four unla
beled quarnet topologies results in  observations 
added to our training set. One important thing to note is 
the difference in the number of label permutations that fix 
each quarnet. For example, eight label permutations fix a 
quarnet tree, but only two that fix a 4-cycle (see Figure 
6). Therefore, a single independent sample from a quarnet 
tree, once permuted, will generate eight observations la
beled by each of the three quarnet trees, whereas a single 
sample from a 4-cycle will generate only two observations 
labeled by each 4-cycle. 

In order to avoid a class imbalance, which can bias an 
SVM model towards the majority class (Batuwita & Palade, 
2013), we sample so that there are 9600 observations la
beled by each quarnet. While this balances the number of 
observations labeled by each quarnet, the number of inde
pendent samples corresponding to each quarnet will differ. 
For example, the observations corresponding to a 4-cycle 
represent four times as many independent samples as those 
corresponding to a tree. It is unclear exactly how this af
fects the construction of the support vector classifiers, but 
it is a necessary byproduct of our insistence on a training 
set with balanced classes that is invariant under permuta
tion. 

After the training data is constructed, we use the func
tion svm from the R package e1071 to construct our model. 
We use a linear kernel and a cost parameter of . During 
preliminary investigations, we tuned the cost parameter of 
the soft-margin classifier by building several models with 
different cost parameters (0.0001, 0.001, 0.01, 0.1, 1, 10) 
and comparing the returned accuracy of each model on an 
independent test set. In these tests, there was a leveling 
off of accuracy at the  cost level as the cost parameter 
decreased. However, due to computational considerations, 
this aspect was not explored deeply, and thus, tuning could 
be further explored to improve accuracy. By default, svm 
scales each column, which allows us to compare the resid
uals from invariants of different degrees. Also, by default, 
the function uses a one-versus-one approach, which we 
describe in Section 1.4. With  training 
points, construction of the support vector classifiers takes 
21.4 hours on a iMac Pro with a 2.5 GHz Intel Xeon W 

processor. The resulting SVM model is available in the sup
plementary material. 

3.2 The QNR-SVM Algorithm and Simulation       
Results  

Almost all of the computational cost of the QNR-SVM al
gorithm comes from the generation of the training data 
and the construction of the support vector classifiers, which 
both need only be performed once. Assuming this has been 
done, applying the algorithm is simply a matter of trans
forming the input data appropriately for use in the SVM 
model. We summarize each step of the process here. These 
steps are implemented in the supplementary files (Sam
plingFunctions.R and TrainingAndTesting.R). 

With an SVM classifier already in hand, the five steps 
listed above complete rather quickly. For example, for an 
alignment of  sites, the five steps complete in 22.21 sec
onds with Step 1, converting the aligned sequences into a 
site-pattern frequency vector, taking the most time (21.06 
seconds), and Step 5, the classification step taking only 1.35 
seconds. The speed at which a quarnet is recovered is one of 
the benefits of this method; however, as with other meth
ods, we expect scalability to remain an issue since the num
ber of quarnets to classify grows combinatorially with the 
number of leaves. 

We first demonstrate the performance of the QNR-SVM 
algorithm on data generated according to the model on 
which the method is based. This at least offers evidence 
that the invariants-based SVM can learn general features of 
the network models that are not specific to the training set. 
Next, in Section 3.3, we apply our method to a misspecified 
model involving incomplete lineage sorting where we ob
serve QNR-SVM to be robust to modest levels of gene tree 
discordance. Finally, in Section 4, we apply the algorithm to 
a biological data set consisting of primate data. 

Figure 7 displays the prediction results using QNR-SVM 
on data generated according to the model on which it is 
based. The classifier was trained according to the speci
fications detailed in Section 3.1. The test set consists of 
4800 observations from independently sampling 200 obser
vations from each of the 24 quarnets. Each independent 
sample was obtained by generating an alignment of 
sites for each taxon from one of the quarnet models follow
ing the same branch length sampling regime used for the 
training set. 

• Step 1:  Given the aligned DNA sequences for four 
taxa, compute the length 256 site-pattern frequency 
vector . 

• Step 2:  Replace each coordinate of  with the average 
count for its Jukes-Cantor equivalence class. 

• Step 3:  Use the discrete Fourier transform to convert 
the vector  from probability coordinates to -coordi
nates. 

• Step 4:  Construct the residual vector 
 for . 

• Step 5:  Use the previously built SVM classifier to 
classify  as belonging to one of the 24 network mod
els. 

Statistical Learning With Phylogenetic Network Invariants

Bulletin of the Society of Systematic Biologists 12



Figure 8. Confusion matrices for classifiers trained on data generated from sequences of varying lengths. The true 
quarnet labels for the sim-ulated observations are listed along the bottom of the plot, while the predicted quarnet labels 
are listed along the left side of the plot. Each confusion matrix displays the results for 4800 test observations, 200 for 
each quarnet. The test observations are generated from sequences of the same length as the training data. 

The confusion matrix in Figure 7 reveals the strengths 
and weaknesses of the method. The overall accuracy on our 
test set is 88.9%. The method performs particularly well 
with 4-cycles—more than 99% of the observations gener
ated by a 4-cycle quarnet are correctly classified. Likewise, 
very few observations generated by one of the other quar
nets are misclassified as having been generated by a 4-cy
cle. The method has more difficulty classifying observa
tions sampled from trees, 3-cycles, and double-triangles. 
However, a closer look reveals that the misclassifications 
follow a consistent pattern. In almost all cases, the misclas
sified observations are incorrectly assigned to a submodel 
or supermodel of the correct model. Put another way; the 
observations are assigned to a quarnet that results from 
adding a reticulation edge to or deleting a reticulation edge 
from the correct quarnet. Indeed, this phenomenon ex
plains the symmetric patterns of misclassified quarnets we 
see off the diagonal in the confusion matrix. This pattern 

is not surprising. For example, correctly classifying these 
observations requires in some cases, determining if an ob
servation was sampled from a 3-cycle with a reticulation 
edge parameter near 0 or 1, or a tree that is essentially that 
same 3-cycle with reticulation edge parameter exactly 0 or 
1. More precisely, we see that, in this test set, all but ten, 
i.e. , of observations from trees, 3-cycles, and dou
ble-triangles are either correctly classified, or classified as a 
quarnet with an additional or missing reticulation. 

Due to the underlying nested geometry of the models, 
we expected the classifier to have difficulty with triangles, 
and, as noted in the introduction, it is known that triangles 
are hard to identify in many network inference methods. In 
the experiment reported here, we attempted to avoid the 
degeneration issue that happens as reticulation edge pa
rameters approach 0 and 1 by bounding these parameters 
away from 0 and 1 when generating our data for the train
ing set and test set. As a consequence, there is some built-
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Figure 9. Confusion matrix for test observations generated from quar-nets with branch lengths selected in [0.01, 0.05] 
using support vector machine classifier trained on data generated from quarnets with branch lengths selected in [0.05, 
0.4] 

in preference for the method to default to a quarnet without 
a specific reticulation unless there is strong evidence for 
it, which is in line with the general practice of inferring 
the most parsimonious model in order to explain the data. 
However, as we see from the confusion matrix, there is 
room to strengthen this preference. One way this can be 
done is by putting a threshold on the votes or outputted 
probabilities. The outputted class probabilities for a SVM in 
the  package are obtained according to the methods 
in (Wu et al., 2003), where pairwise probabilities are esti
mated by fitting a logistic distribution to the decision val
ues and then the class probabilities are obtained by reduc
ing the problem to a quadratic optimization problem. For 
example, for the test points corresponding to the 3-cycle 

 classified in Figure 7, the outputted probabilities when 
the network was classified correctly displayed a strong sig
nal with probabilities in the  range for  whereas 
the probabilities when the network was misclassified in
dicated more uncertainty, generally with the probability 
mass concentrated on both the incorrect and correct net
works (with the incorrect network having probabilities in 
the  range). 

Since we expect the variance of the residuals to shrink 
as the number of sites increases, the trained support vector 
machine is sensitive to the number of sites. For example, 
if we use the above-trained support vector machine on test 
sets constructed by generating alignments of lengths , 

, and , then the accuracies are 22.8%, 50.9%, and 
77.5% respectively. Thus, if using shorter sequences, we 
suggest training the classifier according to the number of 
sites. We trained three additional support vector machines 
using  training points generated by 

alignments of length , ,  and tested the classifiers 
using 4800 test points generated by alignments of the same 
length. The confusion matrices are in Figure 8, and the cor
responding accuracies are 57.0%, 69.2%, and 82.5%. While 
the accuracy drops significantly for the classifier trained 
and tested on data generated by sequences of length 1000, 
the misclassified points follow the same pattern described 
above. 

Finally, we aimed for our trained classifier to cover a 
large span of possible edge lengths, however, in order to do 
this, we needed to bound the training data away from zero. 
Thus, some care should be taken using the classifier if it 
is expected that the true phylogenetic network has branch 
lengths less than 0.05 or greater than 0.4. In one experi
ment summarized in Figure 9, where we constructed a test 
set by selecting branch lengths in the range , the 
accuracy decreased to . In this case, the classifier ac
curacy was 100% for trees and 96% for 4-cycles, but 0% 
for 3-cycles and double-triangles. For the 3-cycles and dou
ble-triangles, the classifier selected the corresponding dis
played tree 100% of the time. One possible way to address 
this sensitivity to branch lengths outside of the trained re
gion is to train a support vector machine according to the 
expected branch lengths of the data set. We describe one 
way to do this in Section 4.2. 

3.3 Simulation under the Coalescent      

The QNR-SVM algorithm is based on a model that does 
not account for the coalescent process or other factors be
yond hybridization that may result in variation of phyloge
nies across the genome. However, from a practical perspec
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Figure 10. Network Topology for Coalescent Simulation. 

Figure 11. QNR-SVM estimated evolutionary scenario for 
the Hominidae clade. The tree has been rooted using the 
outgroup Nomascus leucogenys. All edges have 100% 
bootstrap support. 

tive, it is easy to apply QNR-SVM to concatenated sequence 
data. The complexities of when and how one best combines 
multi-locus datasets to infer phylogenetic networks are be
yond the scope of this work. However, we conducted a brief 
simulation to examine how QNR-SVM performs in the pres
ence of incomplete lineage sorting under the network mul
tispecies coalescent (NMSC) model. For details on the 
NMSC model, see (Degnan, 2018). While there is evidence 
that NMSC reconstruction may be enhanced by analyzing 
multiple individuals per species, for example (Cai & Ané, 
2021; Rabier et al., 2021; S. Zhu & Degnan, 2017), QNR-
SVM is limited to a single individual per species. 

In the network multispecies coalescent model, it is fre
quently assumed that hybridization events happen instan
taneously, and such events are modeled with reticulation 
edges of length zero (Blischak et al., 2018). This model 
choice is meant to ensure that the hybrid parent and child 
co-exist at the same point in time. However, it is also possi
ble that one or both of the hybrid parents came from a lin
eage that went extinct or was not sampled. In these cases, 
it would make sense for the reticulation edge in the net
work to have non-zero length. Given that 4-taxa networks 
are frequently considered restrictions of a larger network, 

we believe that, in practice, most applications will involve 
reticulation edges of non-zero length. 

With this in mind, we performed simulations using two 
different phylogenetic networks, one with length zero 
reticulation edges ( ) and one with reticulation edges of 
non-zero length ( ). The 6-leaf rooted phylogenetic net
work topology of both networks is shown in Figure 10. This 
network displays all four possible unlabeled quarnet net
work topologies among its  displayed quarnets. 

We assume that each edge of the species networks has 
the same population size. To measure the impact of in
complete lineage sorting, we test three effective population 
sizes ( . The mutation rate is fixed 
throughout these experiments at  substitutions 
per generation. 

There is no simple formula for selecting branch lengths 
to train a QNR-SVM model, which would be appropriate 
across the quarnet restrictions of a specified network under 
the multispecies network coalescent model. The QNR-SVM 
algorithm requires that we restrict to 4-taxa subsets. Thus 
the resulting quarnets will have branch lengths that are 
sums of branch lengths in the original -taxa network. 
Moreover, under the multispecies coalescent process, 
branches on the gene trees may be shorter or longer than 
corresponding branches in the species tree. To work around 
these difficulties, we used a range of branch lengths for 
the species tree such that the majority of the displayed 
gene trees would have branch lengths within the range 
of , the same range used to train our QNR-SVM 
model. 

For each population size, we construct  species net
works. For each simulated network, we simulate  gene 
trees under the multispecies coalescent model with branch 
lengths in generations using the PhyloCoalSimulations 
package in Julia (Fogg et al., 2023). We simulate a sequence 
of length  bases pairs for each gene tree under the 
Jukes-Cantor model using Seq-Gen. We concatenate these 
sequences such that each data point is an alignment of 
sites. Associated code and detailed simulation results are 
available in the Supplemental Materials. As noted, the ef
fective population size impacts the amount of incomplete 
lineage sorting and so the range of branch lengths in the 
gene trees. Table 1 summarizes how these features change 
under the three effective population size conditions. 

We note here that large population sizes can cause two 
challenges in the application of QNR-SVM. As shown in 
Table 1, an increase in population size has the direct effect 
of increasing incomplete lineage sorting. As QNR-SVM 
does not assume a model that includes incomplete lineage 
sorting, we expect performance to decrease as population 
size increases. However, we note a secondary impact: in
creasing population size also increases the range of branch 
lengths on the gene-trees, which increases the percentage 
of gene tree branch lengths that fall outside of our training 
dataset, which, in turn, can negatively impact our esti
mates. 

We ran the model of QNR-SVM from Section 3.1 on each 
4-taxa subset. Table 2 shows the results classified by unla
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beled quarnet topology across the three effective popula
tion sizes. 

When the branch length of the reticulation edge is , 
QNR-SVM does very well at detecting trees, 3-cycles, and 
4-cycles, with reduced accuracy for trees and 3-cycles for 
the highest population size. This is not surprising, given 
that a higher population size means more incomplete lin
eage sorting. In this case, QRN-SVM often estimates the 
tree and three cycles as 4-cycles, with elements of the tree 
or hybrid cherries appearing as neighbors in the 4-cycle. 
The low accuracy for QNR-SVM for double-triangles is mis
leading. For instance, on network , for effective popu
lation sizes  and , QNR-SVM always 
estimates the three-cycle with hybrid cherry containing 
and whichever of  or  is present. With these population 
sizes, the hybrid cherry  is mistaken for a tree-cherry. 
With the population size , QNR-SVM estimates 
the double 3-cycle as a single 3-cycle over  of the time, 
this time detecting each of the hybrid cherries in roughly 

 samples each. This suggests a potential benefit of using 
the QNR-SVM algorithm when ILS is present, especially 
considering that -cycles and double-triangle networks are 
not detectable from gene concordance factors (Solı́s-Lemus 
& Ané, 2016). 

When the reticulation edges have non-zero branch 
lengths, the accuracy of QNR-SVM decreases on the trees. 
At the two lower population sizes QNR-SVM, all the errors 
in reconstructing the trees involve mistaking one of the 
tree cherries as a hybrid cherry. The decrease in accuracy 
in estimating the 3-cycles is the result of mis-estimating a 
tree-cherry as a hybrid cherry or vice-versa. The non-zero 
branch length of the reticulation edges does not impact 
QNR-SVM’s estimation of 4-cycles and dramatically im
proves the estimation of double 3-cycles. When the popu
lation size is , QNR-SVM misidentifies all trees, 

Figure 12. Network of the Cercopithecinae backbone tree as estimated with QNR-SVM. 

3-cycles, and double 3-cycles as 4-cycles but continues to 
place the tree and hybrid cherries as neighbors in the 4-cy
cle. All errant 4-cycles were still identified as 4-cycles, with 
most of the errors maintaining the correct ordering of the 
samples but misidentifying the reticulation. 

Overall, this simulation shows that QNR-SVM is rela
tively robust to the presence of incomplete lineage sorting. 
However, the accuracy does decrease for very large levels of 
incomplete linage sorting. This simulation is not expansive 
enough to identify which misspecification (model or gene 
tree branch length distribution) is driving the reduction in 
accuracy. We do not recommend that QNR-SVM be used as 
a definitive source in constructing phylogenetic networks in 
the presence of incomplete lineage sorting, as the simula
tion provided here is small in scale. However, it does have 
the potential to be a helpful tool, especially when the QNR-
SVM is tailored to the data set. The example in Section 4 
demonstrates such an application. 

4 Biological Examples    

Quartets and quarnets can play an essential role in recon
structing trees and networks since the topological struc
ture of individual quartet trees or networks can encode the 
topological structure of a larger tree or network from which 
it is sampled. For instance, SVDQuartets estimates a sin
gle quartet for each 4-taxa subset and combines these quar
tets into a larger species tree (Julia Chifman & Kubatko, 
2014). Such a network inference process has two key com
ponents: estimating the individual quarnets and combining 
the quarnet information into a larger network. Currently, 
the QNR-SVM algorithm only addresses the first compo
nent of this problem. Still, for a small number of taxa, ad 
hoc approaches for assembling quarnets can provide a use
ful picture of how the algorithm might be applied to a data 

Statistical Learning With Phylogenetic Network Invariants

Bulletin of the Society of Systematic Biologists 16

https://ssbbulletin.scholasticahq.com/article/146114-statistical-learning-with-phylogenetic-network-invariants/attachment/318220.png?auth_token=Kq98ml-cZRgQ10YQpdz6


Figure 13. QNR-SVM estimated 4-cycles. Each 4-cycle represents a collection of three estimated quarnets with each of 
the individual macaque species placed in the leaf labeled Macaca. 

set with more taxa. In the future, we envision software that 
combines semi-directed quarnets into a single larger net
work (analogous to QuartetsMaxCut for trees (Snir & Rao, 
2012)) or which returns the level-one network that maxi
mizes the number of displayed quarnets. 

4.1 Description of Primate Data      

In (Vanderpool et al. 2020a), Vanderpool et al. examined 
the phylogenomic history of 26 primate species and 3 non-
primate outgroup species using various phylogenomic 
methods designed to reconstruct a species tree. In addition, 
the authors sought to detect interspecific introgression by 
using a version of the  test (Huson et al., 2005), an ex
tension of the D-statistic test, more commonly known as 
the “ABBA-BABA” test (Durand et al., 2011; Green et al., 
2010; Kulathinal et al., 2009), but which uses gene concor
dance factors as input. Using these methods, they identified 
six cases of introgression, primarily among the monkeys in 
the Cercopithecinea clade. It is not feasible for us to recon
struct the species network for all 29 species. Indeed, this 
would require us to resolve the potential conflicts among all 

 quarnets. So instead, we apply QNR-SVM to 

two subsets of the primate data representing the Hominidae 
and Cercopithecinae clades. Here, we describe each of the 
examples. 

Example 1:   Hominidae  clade. The first data set consists 
of five primates from the Hominidae clade; Pan paniscus 
(bonobo), Pan troglodytes (chimpanzee), Pongo abelii 
(orangutan), Gorilla gorilla (gorilla), and Homo sapiens (hu
man) and the outgroup Nomascus leucogenys (northern 
white-cheeked gibbon). 

Example 2:   Cercopithecinae  clade. The second example 
consists of the eight primates in the Cercopithecinae clade; 
Chlorocebus sabaeus (green monkey), Cercocebus atys (sooty 
mangabey), Mandrillus leucophaeus (drill), Papio anubis 
(olive baboon), Theropithiecus gelada (gelada baboon), 
Macaca nemestrina (southern pig-tailed macaqeu), Macaca 
fascicularis(crab-eating macaqeu), and Macaca mulatta 
(rhesus macaques), as well as the outgroup Colobusangolen
sis palliatus (black and white colobus). 

We used DNA sequence data referenced in the supple
mentary materials of (Vanderpool et al. 2020a) and accessi
ble on Dryad (Vanderpool et al. 2020b). This data contains 
the concatenated coding sequences of  single-copy or
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Figure 14. Best approximation of a level-one network which accounts for estimated 4-cycles. 

Table 1. Impact of effective population size on gene tree topologies and branch lengths. The top two rows of the table 
show the observed incomplete lineage sorting (ILS) for networks  and  under each effective population size. We 
measure ILS as the percent of gene trees that do not match the species tree when both are restricted to  and 

 (the two topologies for which the restricted species network is a tree). The bottom two rows show the 
percent of quarnet branch lengths that fall within , the range of branch lengths used to train the SVM. 

Observed ILS 0.00% 4.78 % 50.2 % 

Observed ILS 0.00% 0.35% 51.69% 

Pct. of QBL in Training Range 99.0% 94.7% 67.9% 

Pct. of QBL in Training Range 99.3% 96.6% 77.8% 

thologs present in at least  of the  species. This results 
in a sequence length of  bp for each species. For 
each 4-taxa subset, we examined only gap-free sites. 

4.2 Methods   

Vanderpool et al. found evidence of incomplete lineage 
sorting and hybridization in the primate data (Vanderpool 
et al. 2020a). As noted in Section 3.3, incomplete lineage 
sorting can impact the accuracy of QNR-SVM through both 
gene tree discordance and by shifting the gene tree branch 
lengths away from those found on the species tree. To help 
mitigate this impact, we train a new SVM on a targeted 
training set. To get branch lengths for our targeted training 
set, we first constructed a neighbor joining tree on all 
species with distances estimated using the Jukes–Cantor 
model. From this tree, we then determined the lengths of 
the branches in each of the  quartets. We then built 
our targeted SVM using  samples from each of the 24 
quarnets, where branch lengths were sampled uniformly at 
random from the set of quartet branch lengths found from 

the neighbor joining tree. Following the methodology in 
Section 3.1, we then simulated DNA sequences of length 

 for each quarnet, and then trained a new SVM on 
this data. 

This newly trained model was used to estimate networks 
for all 4-taxa subsets of the Hominidae and Cercopithecinae 
species. For each 4-taxa subset, we computed  bootstrap 
estimates by re-sampling sites from the gap-free alignment 
for those four species. 

4.3 Results   

The complete listing of QNR-SVM estimates and associated 
bootstrap support can be found in the GitHub repository 
listed in the Supplemental Materials. 

4.3.1 Example 1:    Hominidae  clade  

The QNR-SVM algorithm returns a tree structure with 
100  bootstrap support for all fifteen subsets of the six 
species. The tree in Figure 11 displays all estimated quartet 
trees. This is consistent with the findings of (Vanderpool 
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Table 2. Accuracy of quarnet reconstruction for different effective population sizes. Here, accuracy refers to how often 
QNR-SVM correctly classified each type of quarnet in the 6-taxa network in Figure 10. For each population size and 
network, the averages are across 200 trees, 800 3-cycles, 300 4-cycles, and 200 double-triangles, reflecting the 
distribution of displayed quarnets in the species network. 

Tree 98.5% 91.5% 16.0% 

Tree 59% 24.5% 0.0% 

3-cycle 99.5% 99.6% 25.9% 

3-cycle 75% 80.0% 0.0% 

4-cycle 100% 100 % 100% 

4-cycle 100% 100% 54.3 % 

double-triangle 0.0% 0.5 % 0.0% 

double-triangle 97.0% 96.5% 0% 

et al. 2020a) where the same tree structure received 
bootstrap support and a posterior probability of . It is in
teresting to note that QNR-SVM returned the same findings 
despite the relatively low gene and site concordance factors 
in this clade found in (Vanderpool et al. 2020a). 

4.3.2 Example 2:    Cercopithecinae  clade  

Among the 126 subsets of 4 taxa in the Cercopithecinae 
clade example, the QNR-SVM algorithm estimated 103 un
derlying quarnet tree structures with  bootstrap sup
port, 9 tree structures with less than  bootstrap sup
port, three 4-cycle networks with  bootstrap support 
and twelve 4-cycle networks with less than  bootstrap 
support. The estimated networks are not consistent with 
a single level-one network. Although we lack a formal al
gorithm for combining these incompatible semi-directed 
level-one quarnets, we can still discuss the key observa
tions supported by the QNR-SVM estimated quarnets. 

The QNR-SVM algorithm strongly supports the tree in 
Figure 12 as a backbone on which to examine potential 
hybridization events. Of the 112 trees estimated by QNR-
SVM, 111 are compatible with this backbone tree, with the 
sole exception having a bootstrap value of only 29 out of 
100. This is the only tree that displays this collection of 
quartet trees. The backbone tree matches the underlying 
tree structure estimated by Vanderpool et al. (Vanderpool 
et al., 2020) and by Kong et al. using PhyNest (Kong et al., 
2022). 

Fourteen of the estimated quarnets were 4-cycles. There 
are 4 groups of three quarnets, in which each group places 
the three macaques in the same relative position to 3 other 
species as shown in Figure 13. Given the fixed location of 
the macaques in all of the estimates, it seems likely that 
these twelve estimates indicate at most four hybridization 
events involving the ancestor of the macaques rather than 
individual events. One of the two remaining 4-cycles has 
low bootstrap support (43%), in which more of the boot
strap estimates supported a tree topology. Another 4-cy
cle contains a single macaque, but the subsets containing 
the two other macaque and the remaining three samples 
were estimated as trees. Any representation of this 4-cycle 

would suggest that many other 4-cycles should have been 
detected but instead were estimated as trees. 

The quarnets in Figure 14 are incompatible with a semi-
directed level-one network. The backbone tree in Figure 
12 is the level-one network which maximizes the number 
of displayed quarnets that match the QNR-SVM estimates. 
The semi-directed level-one network in Figure 14 displays 
fewer overall observed quarnets but captures a significant 
portion of the estimated 4-cycles. 

Since level-one networks are a restrictive class of net
works, the evolutionary events that gave rise to the 
macaques were likely more complex than can be described 
with a level-one network. In particular, we note that for 
this study, if we assume the semi-directed level-one net
work in Figure 14, the estimated quarnets that would be 
considered as errors do not match the error patterns that 
we found in the simulation studies. While our findings, 
as well as those of (Kong et al., 2022; Vanderpool et al., 
2020), all indicate ancestral hybridization, the specific reso
lution of this evolutionary history remains unclear. Finally, 
we did not detect the within-macaque hybridization iden
tified in (Kong et al., 2022; Vanderpool et al., 2020). We 
note that the branch lengths associated with quarnets con
taining all three macaques would be on the very short end 
of the branch lengths in our training set, which samples 
across the entire primate tree. 

4 Conclusion and Discussion     

In this manuscript, we explore how algebraic phylogenetic 
invariants can be paired with support vector machines to 
infer phylogenetic networks. As we see in Section 3.2, the 
results on simulated data are promising, as the QNR-SVM 
algorithm achieves overall accuracy above 88% on the test 
set. Moreover, almost all of the errors fit a predictable pat
tern in which the predicted network differs from the true 
network by the insertion or deletion of a reticulation edge 
in a triangle (or 3-cycle). While this is a novel and promis
ing approach, it is only a first step in developing an efficient 
and effective tool for inference. Indeed, many questions can 
be explored that are likely to lead to improvements. 
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One of these questions regards the set of phylogenetic 
invariants that we used to transform our data. As discussed 
in Section 2.1, one of our main criteria for our method was 
permutation invariance, so we constructed a permutation 
invariant set of phylogenetic invariants. However, this set 
contains 1126 polynomials, meaning our training data is in 

. The same method developed with a smaller set of in
variants may be as effective and offer additional savings in 
the time required to train the model and classify observa
tions. 

One way to cull the set we used here would be to use 
some measure of variable importance and retain only those 
variables with demonstrated power to distinguish between 
quarnets. Of course, it would still be desirable for the re
maining set of phylogenetic invariants to be permutation 
invariant. It may also be possible to use some algebraic or 
geometric principles to determine theoretically which in
variants should perform best at distinguishing between cer
tain quarnets, and then to permute this set to obtain a per
mutation invariant set of phylogenetic invariants. Doing so 
would likely not only improve this method but could also 
provide a blueprint for utilizing invariants and algebraic 
statistics more effectively in model selection. 

A second question is how to make the method more 
robust with respect to the sequence length and branch 
lengths. In the main training and test data in our simula
tion study in Section 3.2, each sequence in each alignment 
consists of  sites. While we attain some promising re
sults, we also saw a decrease in accuracy as we decreased 
the number of sites, presumably since this increases the 
variance of each invariant residual. This suggests that this 
method may be more appropriate when there is a sufficient 
number of sites, for example, when the data consists of a 
whole genome alignment rather than data from an individ
ual gene. A separate but related question is how a mismatch 
in the number of sites used in the training and test data 
affects model accuracy. For example, as shown in Section 
3.2, it may be desirable to pretrain several models on align
ments of different lengths (e.g., , , etc.) Then, one 
could choose the model trained on sequences of a similar 
length to the sequences one wished to classify. We have yet 
to explore this question in depth. 

A similar issue to the number of sites is the choice of 
branch lengths. Our experiments suggest performance of 
the model decreases rapidly for networks with branch 
lengths outside of the range of those in the training set. 
One possible fix for this is to retrain the model in the prob
able range of the branch lengths, as we did, for example, in 
Section 3.3 using branch length estimates from the neigh
bor joining tree. Then, the model can be retrained with 
branch lengths chosen from intervals that will result in 
quarnets with the same approximate pairwise distances. 

We noticed better accuracy when we worked on narrower 
branch length intervals, so in some cases, the computa
tional cost of training the classifier may be worth the im
proved accuracy. Similar to the above suggestion, one could 
also pretrain several models on different ranges of branch 

lengths appropriate for different sets of taxa as described 
in 4.2. In any case, though, it becomes challenging to infer 
quarnets with weak phylogenetic signal as the branch 
lengths go to zero. 

Another issue that warrants discussion is the assump
tion of level-one networks. By combining inferred level-one 
quarnets, it is possible QNR-SVM can be used to recon
struct level-one networks of arbitrary size. However, be
cause the model only returns level-one networks, it is not 
possible for the model to correctly infer the underlying 
network from data generated by a network of level-two or 
greater. In order to extend this methodology to general 
level-  networks, algebraic studies that determine distin
guishing sets of invariants for level-  networks would be 
needed. 

Finally, our method is designed to work with data gener
ated according to the Jukes-Cantor model of DNA sequence 
evolution on a level-one network. It may perform less well 
when the substitution model is misspecified. However, it is 
likely possible to adapt the method to work with more gen
eral group-based models of DNA sequence evolution. For 
example, several invariants have been found for the level-
one quarnets for the Kimura 2-parameter and 3-parameter 
models (Gross et al., 2021), so it seems feasible to develop a 
similar method. 

Of course, it may even be possible to train a classifier us
ing a more complicated model with this same set of invari
ants. Although this lacks the theoretical justification we of
fer here, it may be that the invariants here are sufficiently 
general to distinguish points coming from other phyloge
netic models, for example, one with a coalescent process or 
a general time-reversible substitution process. 

Supplementary Material   

The supplementary files mentioned in this paper can be 
found here: 
https://github.com/lizgross/Inferring-Phylogenetic-Net
works-with-QNR-SVM 
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