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Abstract

Phylogenetic networks provide a means of describing the evolutionary history of sets of
species believed to have undergone hybridization or gene flow during their evolution.

The mutation process for a set of such species can be modeled asa Markov process
on a phylogenetic network. Previous work has shown that a site-pattern probability
distribution from a Jukes-Cantor phylogenetic network model must satisfy certain
algebraic invariants. As a corollary, aspects of the phylogenetic network are theoretically
identifiable from site-pattern frequencies. In practice, because of the probabilistic nature
of sequence evolution, the phylogenetic network invariants will rarely be satisfied, even
for data generated under the model. Thus, using network invariants for inferring
phylogenetic networks requires some means of interpreting the residuals, or deviations
from zero, when observed site-pattern frequencies are substituted into the
invariants. In this work, we propose a method of utilizing invariant residuals and
support vector machines to infer 4-leaf level-one phylogenetic networks, from which
larger networks can be reconstructed. The support vector machine is first trained on
model data to learn the patterns of residuals corresponding to different network
structures to classify the network that produced the data. We demonstrate the
performance of our method on simulated data from the specified model, a network

model that includes the multispecies coalescent process, and primate data.

Phylogenetic networks are directed acyclic graphs that
aim to describe the evolutionary relationships among a set
of taxa. Less restrictive than their tree counterparts, phy-
logenetic networks have the flexibility to model gene flow
and reticulation events such as hybridization and horizon-
tal gene transfer. Due to this flexibility, phylogenetic net-
works are becoming increasingly common in phylogenetic
analysis, and new tools are needed for their inference. In
this work, we approach the inference problem from an al-
gebro-geometric framework, combining tools from compu-
tational algebraic geometry and statistical learning.

Currently, there is no consensus on the best method for
inferring a phylogenetic network from genetic data. Thus,
having multiple approaches to compare and contrast is
helpful as new tools emerge. Many of the early approaches
for inferring networks adapted procedures that had been
successful for tree inference, such as maximum parsimony
(Jin et al., 2007; Park et al., 2010) and neighbor-joining
(Bryant & Moulton, 2004), or building networks from a set
of smaller inferred trees (Baroni et al., 2005; Huber et al.,
2011; Nakhleh et al., 2005; Yang et al., 2014). More re-
cently, distanced-based methods have shown some promise
(Allman et al., 2022; Bordewich, Huber, et al., 2018; Bor-
dewich, Semple, et al., 2018), as well as methods that in-

corporate possible effects from incomplete lineage sorting
using network extensions of the multispecies coalescence
model (Kubatko & Chifman, 2019; Rabier et al., 2021; Solis-
Lemus & Ané, 2016; Wen et al., 2016; Yu et al., 2011; J.
Zhu et al., 2018). The methods based on the network mul-
tispecies coalescent model, such as SNaQ (Solis-Lemus &
Ané, 2016), have had the most recent success, with many
implemented in PhyloNet (Wen et al., 2018) for general use.
However, issues such as scalability (Hejase & Liu, 2016) and
the identifiability of certain features (e.g., 3-cycles) remain
(Banos, 2019; Solis-Lemus & Ané, 2016).

In this work, we take a model-based approach to in-
ferring networks from observed site-pattern frequencies in
aligned genomic sequences. Since our goal is to show the
effectiveness of algebraic methods for network inference,
we start with level-one network-based Markov models, also
sometimes referred to as displayed-tree models. We also as-
sume a Jukes-Cantor substitution process. The advantage
of working with these relatively simple network models is
that their algebraic properties are well understood (Gross et
al., 2021; Gross & Long, 2018). Another advantage of these
models is that the unrooted network topology is identifi-
able from site frequency data, and the semi-directed topol-
ogy is identifiable up to 3-cycles (i.e., we can not identify
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the direction of edges a 3-cycle) (Gross et al., 2021; Gross &
Long, 2018).

Algebraic methods that use polynomials to distinguish
between different underlying graph structures have a his-
tory in phylogenetic reconstruction (Casanellas & Fernan-
dez-Sanchez, 2011; Cavender & Felsenstein, 1987; Chifman
& Kubatko, 2015; Lake, 1987; Rhodes et al., 2021), both at
the genomic and genetic level. In these works, data in the
form of site-pattern frequencies or gene tree distributions
are substituted into distinguishing polynomials, referred to
as phylogenetic invariants, and the resulting polynomial val-
ues, or residuals, are used to select graph structures de-
pending on the distance of the residuals from zero. How-
ever, determining appropriate cut-offs for the residuals has
been a challenge. Here, we show that statistical learning
techniques can be used to interpret the residuals in the
context of the network inference problem.

Our method for inferring quarnets, Quarnet Network Re-
construction using Support Vector Machines (QNR-SVM),
has two parts: training and classifying. In the training part,
we generate sequences of a fixed length according to all 24
level-one quarnets. We then compute the site-pattern fre-
quencies and transform the resulting values into Fourier
coordinates (see Section 2.1). We then evaluate the 1126
polynomials described in Section 2.2 on the transformed
values. Finally, we train a support vector machine classifier
on these points, which we use for classification. In simula-
tions, the classifier performs well with approximately 88%
accuracy with sequences of length one million. Reducing
the length of the sequences reduces the accuracy; how-
ever, we still achieve 57% accuracy when using sequences of
length one thousand.

ONR-SVM focuses solely on 4-leaf level-one networks,
that is, level-one quarnets. It has already been shown that
it is theoretically possible to construct level-one networks
from their quarnets (Huber et al., 2018; Iersel & Moulton,
2014) Furthermore, more efficient puzzling techniques for
reconstructing larger networks from smaller networks are
quickly being developed (Huber et al., 2017; Huebler et al.,
2019). Thus, the ability to accurately infer level-one quar-
nets provides the foundation for reconstructing level-one
networks of arbitrary size.

To close the introduction, we want to underscore some
of the assumptions on which our method is based. First,
the model does not account for incomplete lineage sorting.
This contrasts with methods such as SNaQ and HyDe, which
assume data are generated under a network mulitspecies
coalescent model (Blischak et al., 2018; Chifman & Ku-
batko, 2015). The model also assumes site independence
and so does not capture linkage disequilibrium.

Still, because it is so well understood from an algebraic
standpoint (Gross & Long, 2018), this model is the logical
starting point for exploring the use of computational al-
gebraic geometry for network inference. Showing the ef-
fectiveness of our method on a simplified model can help
motivate further studies on the algebraic and geometric
properties of more complicated network models along the
lines of (Banos, 2019; Casanellas & Fernandez-Sanchez,

Figure 1. A level-one 9-leaf rooted binary phylogenetic
network with three reticulation vertices highlighted in red
and six reticulation edges distinguished by dotted lines.

2021; Cummings et al., 2021; Hollering & Sullivant, 2021;
Martin et al., 2023).

1 Background

We begin this section with an introduction to the basic de-
finitions and terminology for phylogenetic networks. We
then introduce the particular phylogenetic network model
that underlies our method. Finally, we give a brief overview
of support vector machines, the statistical learning ap-
proach that forms the basis of our method.

1.1 Level-one semi-directed networks

Definition 1.1. A rooted binary phylogenetic network N on
a set of leaves [n] = {1,...,n} is a rooted acyclic directed
graph with no edges in parallel (i.e., no multiple edges) sat-
isfying the following properties:

1. The root has out-degree two.

2. The only vertices with out-degree zero are the leaves,
and each of these have in-degree one.

3. All other vertices either have in-degree one and out-
degree two, or in-degree two and out-degree one.

The vertices of in-degree two in a phylogenetic network,
such as the red vertices in Figure 1, are referred to as reticu-
lation vertices, and the level of a phylogenetic network is the
maximum number of reticulation vertices in a biconnected
component of the network. A biconnected subgraph is a
subgraph that remains connected (in this case, weakly con-
nected) under the removal of any vertex, and a biconnected
component of a graph is a maximal biconnected subgraph.
Each cycle, in the undirected sense, of the network in Fig-
ure 1 is a biconnected component of the network. Since
each biconnected component contains only a single retic-
ulation vertex, the network is a level-one network. Edges
directed into reticulation vertices are referred to as retic-
ulation edges, while all other edges are referred to as tree
edges. In Figure 1, the reticulation edges are marked by dot-
ted lines.
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Figure 2. The four structures in the figure below include, from left to right: a level-one 4-leaf rooted binary phylogenetic
network, the associated phylogenetic semi-directed network, and the two unrooted trees we obtain by deleting

reticulation edges in the semi-directed network.

Tree-based networks are networks obtained by starting
with a rooted binary tree and successively adding edges
from tree edge to tree edge. While it is known that not all
phylogenetic networks are tree-based networks (Francis &
Steel, 2015), level-one networks are tree-based networks.

Given a binary phylogenetic network, if we undirect all
non-reticulation edges of the network and suppress the
root vertex, we obtain a phylogenetic semi-directed network;
such graphs are called semi-directed graphs since some of
the edges, in this case, the reticulation edges, are directed,
while others are undirected. The set of phylogenetic semi-
directed networks are exactly those leaf-labeled semi-di-
rected graphs that can be obtained in this way. As an ex-
ample, Figure 2 shows a 4-leaf rooted binary phylogenetic
network alongside its associated phylogenetic semi-di-
rected network. The level of a phylogenetic semi-directed
network is defined just as for a phylogenetic network as
are the reticulation vertices and edges. These semi-directed
networks are important for our purposes since the location
of the root of the phylogenetic network parameter is
unidentifiable from the site-pattern probability distribu-
tions produced by the models we consider (Gross et al.,
2021, sec. 2.3). Thus, all of the information about a Markov
model on a binary phylogenetic network is contained in the
associated phylogenetic semi-directed network.

Figure 3 represents all 4-leaf level-one binary phyloge-
netic semi-directed networks. Beginning in the bottom row,
we refer to these as trees, 3-cycle networks, 4-cycle networks,
and double-triangle networks. In each of the 4-cycle net-
works, the reticulation vertex is the large red vertex, and
the reticulation edges are the two edges of the cycle di-
rected into this vertex. For reasons of algebraic identifia-
bility, which we discuss in Section 2.1, we do not show the
reticulation edges on either the 3-cycle networks or dou-
ble-triangle networks. Hence, each 3-cycle network shown
represents three different phylogenetic semi-directed net-
works that can be obtained by specifying the reticulation
vertex in the 3-cycle of the graph. Each double-triangle
network represents eight phylogenetic semi-directed net-
works obtained by choosing the reticulation vertex in each
triangle. Note that choosing the two adjacent vertices in the
triangles to be reticulation vertices does not result in a phy-

logenetic semi-directed network since there is no root loca-
tion compatible with the necessary edge orientations.

1.2 Network Models of Sequence Evolution

The method we suggest in this paper is based on the un-
derlying network-based Markov model of sequence evolu-
tion described in (Gross & Long, 2018; Nakhleh, 2011). For
a particular choice of parameters, a network-based Markov
model returns a probability distribution on the n-tuples of
DNA bases that may be observed at a particular site in the
aligned DNA sequences of a set of n taxa. Each of these
site-pattern distributions in the network-based model are
weighted sums of site-pattern distributions belonging to
tree-based phylogenetic models.

In a tree-based phylogenetic model, evolution is mod-
eled as a k-state Markov process proceeding along a rooted
n-leaf phylogenetic tree T with root p, where each vertex v
of T is associated to a random variable X,,. In this paper, we
will be concerned specifically with models of DNA sequence
evolution, and so we let k = 4 and identify the states with
the set of DNA bases {4, C, G, T}. Furthermore, since we
will be concerned with quarnets, i.e., 4-leaf phylogenetic
networks or semi-directed networks, we will also assume
n=4.

Let A? be the d-dimensional probability simplex
Ad:={pe R | SHlp =1, p; >0for1 <i<d+1}.
A distribution in the tree-based Markov model associated
with a tree T is given by specifying a root distribution, a vec-
tor 7 € A® defined by P(X, = i) = m;, and a Markov transi-
tion matrix M (“?) with M(/:“’ = P(X, = j| X, = i) to each
edge (u,v) of T. The transition matrices encode the proba-
bility of mutations occurring along each edge of the tree.
For phylogenetic analysis, we are particularly interested in
the states at the four leaves of T'. These site-patterns are the
4-tuples of the DNA bases that we may observe in the
aligned DNA sequences for a set of species. To compute
the probability of observing a particular site-pattern at the
leaves, we marginalize over all possible states of the non-
leaf vertices of T'. In particular, let ¢ : V(T) — {4,C,G, T}
be an assignment of states to the vertices of T'; we can think
of ¢ as a vector of length |V(T')| and use ¢, to denote the
state of X,. Let ¢, be the restriction of ¢ to the leaves

Bulletin of the Society of Systematic Biologists 3


https://ssbbulletin.scholasticahq.com/article/146114-statistical-learning-with-phylogenetic-network-invariants/attachment/318210.png?auth_token=Kq98ml-cZRgQ10YQpdz6

Statistical Learning With Phylogenetic Network Invariants

Figure 3. The poset of algebraically identifiable 4-leaf level-one phy-logenetic semi-directed networks. For the 4-cycle
networks, the red dots represent reticulation vertices; for the 3-cycle networks the reticulation vertex is not identifiable.
A line between two quarnets indicates that the ideal of the quarnet above is contained in the ideal of the quarnet below.
For reference in the text and in the supplemental files, we number these networks from left to right and bottom to top so
that the trees are numbered 1-3, the 3-cycle networks 4-9, the 4-cycle networks 10-21, and the double-triangle networks

22-24.

of T. Then the probability of observing the 4-tuple
we {4,C,G, T} is
Z e, H ng::;i
(p:dc=w)  (up)eE(T)

Thus, a four-leaf tree T defines a map ¥ : O — A256-1
from the parameter space ©, which includes the parameters
of the root distribution and the entries of the Markov tran-
sition matrices to the set of probability distributions on
the 4* = 256 possible site-pattens that may be observed at
the leaves of T'. The model associated to T is defined to be
Myp:=im(¢7). A key observation from algebraic statistics
that will allow us to use algebraic methods is that the map
17 is a polynomial map in the parameters of the model.

Similar to tree-based models, a phylogenetic network
model on a 4-leaf phylogenetic level-one network N de-
fines a polynomial map ¥y : O — A1 from the para-
meter space of the network model to the set of site-pattern
distributions. Again, similar to tree models, the parameter
space includes a root distribution and a Markov transition
matrix associated to each edge of the network. However, for

a phylogenetic network model with m reticulation vertices
v1,...,Un, there are m additional parameters «; € [0, 1] for
1 < i < m. In the case of level-one quarnets, the number of
reticulation vertices m is at most two.

Each parameter «; is arbitrarily associated to one of the
reticulation edges e?, directed into v;. The pattern of inher-
itance at v; is directed through the edge e? with probability
a; and through the other reticulation edge e} with probabil-
ity (1 — a;). Thus, to produce a site-pattern from the net-
work model, for each 1 < i < m we independently select ei-
ther e? with probability o, or e} with probability (1 — «;),
and remove the selected edge. After removing one of each
pair of reticulation edges in a level-one phylogenetic net-
work, the result is a 4-leaf phylogenetic tree with the orig-
inal leaf set. A site-pattern probability distribution can be
obtained from this tree-based model, as described above.
Therefore, the map ¥ can be described as a weighted sum
of the maps associated to the 2™ trees obtained by deleting
one of each pair of reticulation edges. The model associated
to N is defined to be M y:=im(¢)y). We note that network-
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based Markov models are strict submodels of phylogenetic
mixture models (Elizabeth S. Allman et al., 2012; Matsen
et al., 2008). In the former, if two edges from the 2™ trees
in the mixed distribution correspond to the same edge in
N, then their associated transition matrices are the same
along each edge, whereas in the latter, the transition matri-
ces may differ.

For tree-based and network-based Markov models in
phylogenetics, it is quite common to simplify the model by
adding constraints on the transition matrices. Such con-
straints reduce the dimension of the parameter space and
the dimension of the images of ¥r and . In this paper,
we will assume the 4-state Jukes-Cantor model of DNA se-
quence evolution in which the root distribution is assumed
to be uniform, and each Markov transition matrix has the
form

1-38 B B B

g 1-33 B B

B B 1-33 P

B B B 1-38
for some 8 € [0,1/4]. The B parameter in the Markov transi-
tion matrix along a particular edge encodes the confounded
effects of time and mutation rate along that edge. Thus,
branch lengths are often given in terms of expected number
of substitutions per site. These are the units used by the
function seqgen from the R package phyclust, which we use
to generate sequences. In these units, an edge of length ¢
corresponds to 8 = +(1 — exp(—4£)).

Because the Jukes-Cantor model is time-reversible, the
root in either a tree or network-based Jukes—Cantor model
cannot be identified (Felsenstein, 1981; Gross et al., 2021;
Gross & Long, 2018). Consequently, for rooted networks Ny
and N, the models My, and My, will be equal if N; and
N, yield the same phylogenetic semi-directed network after
unrooting. Therefore, given data produced by a Jukes-Can-
tor phylogenetic network model, it is only possible to re-
cover the phylogenetic semi-directed network obtained by
unrooting the network parameter (Gross & Long, 2018). For
this reason, we define the models using phylogenetic semi-
directed networks (as in Example 1.2) and work only with
these structures for the rest of the paper.

Example 1.2. For the Jukes-Cantor phylogenetic model
on the 4-leaf binary phylogenetic network depicted in Fig-
ure 2, the parameters of the model include the lengths of
the edges and the two reticulation edge parameters, a; and
(1 — a3). As noted above, the root location of the phyloge-
netic network is not identifiable. Thus, we can equivalently
construct the model by assigning edge lengths and reticu-
lation edge parameters to the semi-directed network shown
in the same figure. The site-pattern probability distribution
from the network will then be a weighted sum of the two
site-pattern probability distributions coming from the tree-
based Markov model with the edge lengths shown on the
two trees at the right in the figure. The weight of the dis-
tribution from the left tree will be (1 — o), and the weight
from the right tree will be a;.

1.3 Phylogenetic Network Invariants

There has been much work previously on identifying phy-
logenetic invariants for Markov models of DNA sequence
evolution (Allman & Rhodes, 2007). The phylogenetic in-
variants for a tree-based Markov model on a tree T' are
the polynomials that vanish on the model M. That is,
letting [n] be the set of leaf labels for T' and letting
Diyiy.. i, = P(X1 =11,...,X,, = i), they are the polynomi-
als contained in the ring
C[pili2---in : il, ig, ey in € {A, C, G, T}]

that evaluate to zero when the entries of any site-pattern
probability distribution from the model are substituted.
The set of all such polynomials that vanish on the model
M is the ideal

IT C C[piliz---in : il,ig, I ,in c {A, C, G, T}],
which is called the ideal of phylogenetic invariants for T.
One motivation for computing these ideals is that they
can be used to show that the models for different trees
are not contained in one another. For example, showing
Ir, ¢ Ir, proves the reverse non-containment for the mod-
els, Mz, ¢ My,. This observation has been used to show
that the tree parameter of several tree-based Markov mod-
els is generically identifiable. That is, for a generic proba-
bility distribution coming from a tree-based Markov model,
it is possible to recover the tree parameter(s) of the model
(e.g., Allman et al., 2011; Allman & Rhodes, 2006; Rhodes
& Sullivant, 2012).

In the same manner as for trees, we can consider the
ideal of phylogenetic invariants for the network NV, the set
of all polynomials that vanish on the model M y. In (Gross
& Long, 2018) and (Gross et al., 2021), the ideals for several
small networks were computed in order to show that the
network parameter of certain network-based Markov mod-
els is identifiable. This approach to establishing identifi-
ability also suggests a method for phylogenetic inference.
Specifically, suppose we have shown that for two networks
N and N, that Iy, ¢ Iy, and Iy, ¢ In,. Then, if the net-
work parameter is generically identifiable, given a generic
site-pattern probability distribution p from either My, or
My, the distribution p belongs to only one of these mod-
els. We can then substitute p into a set of polynomials that
generate Iy, and a set of polynomials that generate Iy,.
The result will be zero for every polynomial in the gener-
ating set of the ideal of the network with model containing
p, and non-zero for at least one of the polynomials in the
ideal of the network with model not containing p.

Theoretically, this same principle should allow us to in-
fer phylogenetic networks from the observed site-pattern
probability distributions coming from the aligned DNA se-
quences of a set of species. In practice, none of the phy-
logenetic invariants for any network are likely to evaluate
to zero on observed data. This is not just because of the
simplifying assumptions in our models. Even if we simulate
from a network-based Markov model to obtain an observed
site-pattern probability distribution, because the models
are stochastic, we are likely to get small non-zero values
when we substitute the entries of this distribution into the
phylogenetic network invariants. Thus, using network in-
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variants for inferring phylogenetic networks requires some
means of interpreting the residuals, or deviations from
zero, when observed site-pattern frequencies are substi-
tuted into the invariants.

One approach to doing this is to compute a score for
each possible network by adding up the absolute value of
the residuals of the invariants in a generating set for the
ideal of the network. The inferred network would then be
the one with the lowest score. This approach was used
to infer phylogenetic trees in (Casanellas & Fernandez-
Sanchez, 2006; Ruskino & Hipp, 2012), though it is unlikely
to be successful in our case. Those works considered only
quartet trees, which all have the same unlabeled topology.
This allows for a direct comparison of the computed scores
since the generating sets of invariants used are related by a
permutation of the variables. However, in our case, we re-
quire invariants for quarnets with four distinct unlabeled
quarnet topologies (the different rows in Figure 3). It is un-
clear how one would compare scores for quarnets in differ-
ent rows using different numbers of invariants of different
degrees and with differing numbers of terms.

A more refined strategy for addressing this problem
would be to apply statistical learning techniques to learn
the patterns of residuals from observed phylogenetic data.
However, this is not possible since there is a need for more
reliable labeled data from which to learn. Yet another ap-
proach would be to derive expressions for the distribution
of invariant residuals, assuming a certain phylogenetic net-
work model of evolution. After all, for a fixed choice of
model parameters, the invariants are polynomial functions
of random variables. However, this would require specifying
a prior distribution on the numerical parameters of the net-
work models. Moreover, the number of variables involved
and the correlation between them makes this infeasible.

For these reasons, we propose a method using support
vector machines and random sampling to interpret the in-
variant residuals. We begin by constructing a set of invari-
ants S that distinguishes between all twenty-four level-one
quarnets as shown in Figure 3. We then sample from a large
region of the numerical parameter space for each quarnet
model. The labeled sampled data is then transformed and
substituted into S, and we train support vector machines on
the invariant residuals. The support vector machines can
then be used to infer quarnets for observed biological data.
As previously noted, since all level-one phylogenetic net-
works can be constructed from their quarnets; this method
can be paired with any method for constructing level-one
networks from quarnets to infer level-one networks of arbi-
trary size.

1.4 Support Vector Machines

Our method relies on constructing a support vector ma-
chine (SVM), a supervised learning model, for classifying
the invariant residuals. We provide here a brief overview of
SVMs adapted from (James et al., 2013) and refer the reader
there for more details.

A linear support vector machine uses separating hyper-
planes for classification. In the simplest case, the training
data consists of observations in a Euclidean space, each la-

beled as belonging to one of two classes. If the training data
are separable, then there exists a hyperplane that perfectly
separates the data so that the observations belonging to
each class live on opposite sides of the hyperplane. In such
a case, the separating hyperplane chosen is the maximal
margin classifier, which is the separating hyperplane that
maximizes the distance to the nearest point in the training
data. Once the hyperplane is determined, new observations
can be easily classified by determining on which side of the
hyperplane they reside.

Of course, it is often not the case that the data used to
train an SVM are perfectly separable. In these cases, the
maximal margin classifier does not exist, and instead, we
seek a soft margin classifier. A soft margin classifier is again
a hyperplane trained on the data; however, since the data
are not separable, it will necessarily misclassify some ob-
servations in the training data. The soft margin classifier
is determined by choosing the hyperplane that best sepa-
rates the training data according to some optimization cri-
teria. Only now, when determining the optimal soft margin
hyperplane, is a cost incurred for each misclassified obser-
vation, and the total allowable cost must remain below a
chosen threshold. For example, if the allowable cost were
zero, then the soft margin classifier would only exist if the
data were perfectly separable, and in that case, it would be
the maximal margin hyperplane. As is typical with statisti-
cal modeling, the cost parameter reflects a tradeoff between
bias and variance, and the optimal cost is typically deter-
mined through cross-validation on the training set.

Two other issues distinguish most applications of SVMs
from the simple case of two separable classes that we out-
lined above. The first issue is that even a soft margin clas-
sifier will only be effective at classifying new observations
if the boundary between each pair of classes is approxi-
mately linear. However, it is easy to imagine applications
where this is not the case. Consequently, SVMs are often
constructed using kernels, which transform the original ob-
servations, possibly by embedding them in a higher dimen-
sional space.

Non-linear decision boundaries in the original space can
be represented as linear decision boundaries defined by hy-
perplanes in the transformed space. The second issue is
that we may have observations belonging to one of several
classes, rather than just two. There are a few ways to ad-
dress this issue, one of which is the “one-versus-one” ap-
proach, which we use below. In this approach, given data
belonging to m different classes, we construct (') hyper-
planes, one for each pair of classes. New observations are
then classified by allowing each hyperplane to “vote,” and
the ultimate classification is the class that receives the
most votes.

In our application, the observations are vectors of in-
variant residuals obtained by sampling from a network-
based Markov model. Each observation has a label from
the set {1,2,...,24} based on the equivalence class of the
semi-directed network that produced the observation. To
build the SVM and classify points, we use the R package
e1071 (Meyer et al., 2019). By default, this package uses a
one-versus-one approach to classify new observations. We
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tune the cost parameter by trying several different values
and evaluating the accuracy. Using residuals from a care-
fully constructed set of invariants, our data are already
transformed in a way designed to separate the classes theo-
retically. Specifically, when comparing two quarnets, some
of the coordinates correspond to distinguishing invariants
for the two corresponding quarnets. We thus expect some of
these coordinates to be near zero for one quarnet and non-
zero for the other. Theoretically, the distinguishing invari-
ants will be near zero for one quarnet and will lie above and
below zero for the other in a way that makes a linear deci-
sion boundary a poor choice. However, this is not what we
observe in practice, and typically the invariant residuals are
near zero for the “correct” quarnet and bounded away from
zero for the other. Thus, we have found that a linear kernel
is effective on these transformed coordinates, which we use
in the simulations below.

While one could apply several different supervised learn-
ing methods to the classified invariant residuals, support
vector machines have a few properties that make them par-
ticularly appealing for this purpose. For one, they have an
intrinsic geometric interpretation. Since we are viewing the
phylogenetic network inference problem from an algebra-
geometric vantage point, this may prove useful for further
investigation. For example, the coefficients of the SVM hy-
perplanes may offer clues as to the relative importance of
invariants for separating different models. Moreover, us-
ing results from (Lin et al., 2007), (Platt & others, 1999),
and (Wu et al., 2003), one can modify this method to re-
turn probabilities for each class rather than a classification.
This may be useful for developing methods for construct-
ing larger networks from quarnets using a weighted quar-
net scheme similar to those for trees (KS & Haeseler, 1996;
Ranwez & Gascuel, 2001).

2 Constructing A Distinguishing Set
of Phylogenetic Network Invariants
for Jukes-Cantor Quarnets

As noted previously, our analysis will focus on inferring
level-one quarnets, or 4-leaf semi-directed networks, since
these can be used to build larger networks. We will also as-
sume that the underlying DNA substitution process is the
4-state Jukes-Cantor model. In order to apply the invari-
ants based inference method described in the previous sec-
tion, we first need the following definition.

Definition 2.1. Let NV be a set of phylogenetic networks
and M a phylogenetic model. A set S is a distinguishing set
of invariants for N" under M, if for all Ny, N, € N, there ex-
ists a polynomial invariant f in the vanishing ideal of Iy, or
Iy,, but not both.

Thus, our first step is to construct a set of invariants S
that is a distinguishing set of invariants for the set of quar-
nets under the Jukes-Cantor model.

2.1 Generating sets of network ideals and
distinguishing invariants

Generating sets for the vanishing ideals of all level-one
quarnets with a single cycle are known from (Gross & Long,
2018) and those of the three level-one quarnets with two
reticulation vertices (the double-triangle networks) from
(Gross et al., 2021). The computations for these ideals are
contained in the supplemental materials of those works.
The ideals are computed in a set of transformed coordi-
nates. For quarnets under the Jukes-Cantor model, the ring
of transformed coordinates is the ring of g-coordinates, also
referred to as Fourier coordinates,
Claisininis  (i1,92,43,14) € {4,C, G, T}

These g-coordinates are computed from the probability co-
ordinates as follows. Letting x be the matrix

1 1 1 1

1 -1 1 -1

11 -1 -1

1 -1 -1 1
with rows and columns indexed by A, C, G and T,
Qirigigis = Z X1 Xiyjo Xisyjs Xia,jaPjrjagaia (1)

where the index is over all (j1,72,73,74) € {4,C,G, T}4.
This linear change of coordinates, called the Fourier trans-
form, was introduced in (Evans & Speed, 1993) and is com-
mon in phylogenetics when considering group-based mod-
els, such as the Jukes-Cantor model, because it simplifies
the description of the models. For example, for group-based
tree models, after applying the Fourier transform to both
the domain and image spaces of the map v, the ideal I
is generated by binomials in the g-coordinates. The details
of the transform and group-based models are not partic-
ularly relevant to our analysis, so we refer the interested
reader instead to (Evans & Speed, 1993; Sturmfels & Sul-
livant, 2005). For our purposes, the most important point
is that since our invariants are expressed in the g-coordi-
nates, we will need first to transform the observed site-pat-
tern frequencies using (1).

Due to the symmetry of the Jukes-Cantor model, we will
only need to compute part of the vector of 256 g-coordi-
nates. This is because there are a number of site-patterns
that are predicted to appear with the same frequency re-
gardless of the network or tree parameter of the model.
For example, because the substitution rate between all sites
is the same under the Jukes-Cantor model, site-pattern
probability distributions from every network will satisfy
pAcTA = PeTAc- Put another way; this is a linear invariant
in the probability coordinates that is contained in the ideal
of every quarnet. This symmetry in the probability coordi-
nates simplifies the resulting g-coordinates. For example,
128 of the g-coordinates are identically zero for every site-
pattern probability distribution contained in a Jukes-Can-
tor model. Moreover, many of the other non-zero coordi-
nates are identical. Working modulo these linear invariants,
we can express the ideals for each of the quarnets in the
ring contains only the following 15 variables,

Clgaaaa, qaacc, qacac, 9acca; QACGT,
4CAAC, 4CACA; 4CAGT, 4CCAA, 4CCCC) (2)
40GAT; 4CGCG, 4CGTA> 4COGE 4CGGT)-
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The equivalence classes of these variables are listed in the
catalog of Small Phylogenetic Trees (Garcia-Puente, 2007)
under the Jukes-Cantor model for a 4-leaf unrooted tree.
Note that the catalog assumes the additional symmetries of
a particular tree, and so the equivalence classes of gogca
and gceee as well as those of gooce and qocge are com-
bined.

Computing the vanishing ideals for each level-one quar-
net under the Jukes-Cantor model reveals an obstacle to
computing a set of distinguishing invariants. First, as ob-
served in (Gross & Long, 2018), there are many level-one
quarnets with identical ideals. Specifically, two 3-cycle net-
works or two double-triangle networks with the same undi-
rected skeleton have the same vanishing ideal under the
Jukes—Cantor model. For example, consider the 4-leaf
rooted binary phylogenetic network pictured in Figure 2. If
we were to switch the leaf labels 3 and 4 in this network, the
undirected skeleton of the associated phylogenetic semi-
directed remains unchanged. The same is true if we instead
switch the leaf vertex labeled by 3 and the cherry labeled by
(12) in the original network.

It may be that the Markov models built on these three
distinct phylogenetic semi-directed networks are in fact
identical. It is also possible that they are distinguishable in
some way; for example, they may satisfy certain inequali-
ties or non-polynomial invariants. For these reasons, when
we generate samples for the 3-cycles and double-triangles
networks, we randomly choose one of the valid orientations
for the reticulation edges. Still, since our method is based
on theoretical results with polynomial invariants, we will
only ever attempt to infer undirected 3-cycles. Thus, from
this point forward, when we refer to quarnets, we refer to
the 24 distinct topological structures depicted in Figure 3.

We also note that even among the quarnets depicted in
Figure 3, the ideals of some quarnets are properly contained
in the ideals of others. This containment is encoded in the
figure, where a line between two quarnets indicates that the
ideal of the quarnet above is contained in the ideal of the
quarnet below. Thus, it is impossible to form a distinguish-
ing set that contains an invariant that belongs to the van-
ishing ideal Iy, but not to Iy, for all quarnets N; and N.

Recalling that the containment of ideals is reverse to the
containment of models, some of the above results come as
no surprise. For example, it is clear that adding a reticu-
lation edge to a tree results in a model on a 3-cycle net-
work that must contain the tree model. This follows since
any distribution from the tree model can be obtained from
the 3-cycle network model by setting one of the reticulation
edge parameters to 0 and the other to 1. Likewise, we would
expect the models of the 3-cycle networks to be contained
in the models of the double-triangle networks formed by
adding an extra reticulation edge. However, it is perhaps
more surprising that the models of the 3-cycle networks
are contained in models for 4-cycle networks. This is not
the case for the Kimura 2-parameter or Kimura 3-parameter
model, so this appears to be a feature of the Jukes-Cantor
model rather than a feature of the quarnets (Gross et al.,
2021).

Oe+00

1e-05-
alpha
1.00

0.0012

0.0003 0.0008 0.0003
Inv38

0.0000

Figure 4. Plot of two invariant residuals in I, \ Iy, as «
varies for ten randomly chosen, fixed assignments of edge
lengths to Ny.

This is the reason that our definition of a distinguishing
set of invariants for N’ requires only that for every pair
of quarnets, N; and N, in N, the distinguishing set con-
tains an invariant that belongs to either Iy, or Iy,, but not
both. For example, consider the triangle quarnet N, and
the 4-leaf tree Ty with Iy, C Ir,. If f € Iy, \ In,, then for a
generic probability distribution p contained in either My,
or Mz, f(p) =0if p e My, and f(p) # 0 if p € My,. In-
deed, this is the basis of using invariants for inference.

Example 2.2. The graph in Figure 4 shows the residuals
of two invariants contained in Iz, \ Iy,. Each “loop” corre-
sponds to a network obtained by randomly assigning edge
lengths (between 0.1 and 0.2) to the 4-leaf semi-directed
network depicted in Figure 2. Each point represents the
g-coordinates of a theoretical site-pattern probability dis-
tribution in the model M y, evaluated at the two invariants
as the reticulation edge parameter o on the edge labeled
by f goes from 0 and 1. Hence, the loops start and end
at the origin, since site-pattern probability distributions in
the model M y, corresponding to reticulation edge parame-
ters of 0 or 1 are also contained in the model M, .

Example 2.3. The data in Figure 5 correspond to 100
DNA sequence alignments of 10° sites for each taxon. Half
of the sequence alignments were sampled from a site-pat-
tern probability distribution in My, and half from a site-
pattern probability distribution in M y,. We randomly se-
lected the model parameters for sampling using the
methods described in Section 3.1.

In each of the plots, the plotted points correspond to the
residuals of two different invariants and the colored regions
correspond to the decision boundary of the SVM trained on
the plotted data. The invariant residuals shown in Figure 5
(A) are from two invariants in S that distinguish these quar-
nets (i.e., they belong to I, \ I,). The invariant residuals
shown in Figure 5 (B) are from two invariants in S that do
not distinguish these quarnets since they each vanish on
both models (i.e., they belong to I, N Iy,).
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SVM classification plot
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(B) Invariants contained in I, N In,.

Figure 5. These figures show the SVM regions using the residuals of two invariants. The training data consists of
sequences sampled from site-pattern probability distributions in My, and My,.

The theoretical basis for our method is depicted in Fig-
ure 5 (A). The distinguishing invariants are much better
able to distinguish between the two quarnets when com-
pared to the invariants contained in both ideals. We quan-
tify this by applying these SVMs to an independently gener-
ated test set of 200 samples for T} and 200 samples for Ny.
The accuracy of the model trained on distinguishing invari-
ants is 92.25% compared to 51.25% for the model trained on
invariants belonging to both ideals. Though not shown, we
also applied the same method with two invariants in S that
do not belong to either ideal. Even though there is no the-
oretical basis for these invariants to perform well, it would
not be surprising if some polynomial transformations of the
data had some power to distinguish between quarnets. In
this case, the accuracy was 53.00%-slightly better than the
two invariants contained in both ideals (as shown in Figure
5 (B)) but still less than those that theoretically distinguish
the network.

Different pairs of invariants may behave differently, but
to illustrate the principle, we chose pairs of invariants of
low degree (so that the residuals were relatively large) that
were uncorrelated (so they did not contain the same infor-
mation). To do this, we converted S to a list and selected
the first five low-degree invariants of each type from S. For
each type, we selected the pair of invariants with the lowest
absolute correlation of the residuals in the training set.

2.2 Permutation Invariance

So far, we have specified only that the set S be a distin-
guishing set. However, it is an open question in phyloge-
netics as to which invariants are the most effective for in-
ferring phylogenies. One way to construct a distinguishing
set is to find a generating set of each quarnet ideal and
then take the union of these sets of polynomial invariants.
This still leaves many possible options for the distinguish-
ing set since the generating set of an ideal is not unique.

The computer algebra systems used to compute vanishing
ideals return generating sets that satisfy nice mathematical
properties, such as being minimal generating sets or being
Grobner bases with respect to certain term orders. These
properties do not, however, have a clear biological interpre-
tation and may not be well suited for distinguishing phylo-
genetic models.

A desirable property of any phylogenetic inference algo-
rithm is that it is invariant under permutations of the data.
That is, if the algorithm returns network N for input p, then
it should return network o(N) for input o(p). As an exam-
ple, suppose we input the set of aligned sequences for taxa
ABCD in that order into a phylogenetic inference algo-
rithm and that the algorithm returns Ny, the 4-cycle net-
work at the far left in Figure 3. This indicates that taxon
B is a hybrid of taxa A and C. Now suppose that instead
we input the aligned sequences in the order ACDB. Since
the relationship between the taxa has not changed, we ex-
pect the algorithm to return Ny, indicating that the fourth
taxon (B) is a hybrid of the first and second taxa (A and C
in the new ordering).

This issue for invariants-based algorithms was first iden-
tified and addressed in the case of tree invariants in
(Ruskino & Hipp, 2012). In order to ensure that our al-
gorithm is also invariant under permutations of the data,
we adopt a similar approach and construct S itself to be
permutation invariant as we define below. Before we define
this concept more formally, we need two small pieces of
notation. One, for o€ S, and a variable g;;, .,
0(Qiris. .in) = Qo(iris.. i) And two, for a polynomial
f S C[qim.__in 101,12, .,0n € {A, C, G,TH, O'(f) is the
polynomial that results from applying o to every variable in
f. As an example, let

f = gaaccagcacr — dceragcaca
and let o be the transposition (13) € S4. Then

o(f) = qccaaqcacr — qrecagoaca-
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Figure 6. Applying all 24 possible label permutations to any of the trees below results in 24 trees, eight of which are
topologically identical to the original. However, doing the same to either of the 4-cycles below results in 24 quarnets,
only two of which are topologically identical to the original. Note that although the permuted quarnets are topologically
identical, they have different branch lengths and hence correspond to different theoretical site-pattern probability

distributions.
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Figure 7. Confusion matrix for 4800 test observations, 200 for each quarnet. The true quarnet labels for the simulated
observations are listed along the bottom of the plot, while the predicted quarnet labels are listed along the left side of
the plot. A 200 in a diagonal entry means that 100% of the points sampled from the corresponding quarnet were

classified correctly.

Definition 2.4. A set of polynomials

S={f1,f2--, fi} € Clgisiy.. i, : t1,82,---,in € {4,C,G, T}
is permutation invariant if for any permutation ¢ in S,, and
any1<j<l,o(f) €S

In order to construct a permutation invariant set of dis-
tinguishing invariants, we first let S be the union of gen-
erating sets for the ideals of the quarnets Ty, N4, Ny,
and Nsy. That is, we include in S polynomials sufficient
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to generate the ideal for one quarnet from each row of
Figure 3. We then apply a permutation o € Sy to all of
the polynomials in S, and add these polynomials to S.
We repeat this process until S is permutation invariant
(which occurs after applying just the six transpositions in
S4). Note that we still embed our distinguishing set in the
ring of g-coordinate equivalence classes from (2). For ex-

ample, if we determine o(f) = qcca4a9cact — qracadoaca
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should be in S, then we replace ggacr and grgoa by their
equivalence class representatives and add the polynomial
qcoaaqdcAct — doeraqdoaca to S.

The set S we construct contains polynomials sufficient
to generate the ideal for every quarnet in Figure 3. This is
because applying a permutation to a generating set for the
ideal of a quarnet produces a generating set for the ideal of
another quarnet in the same row. This implies that S is a
distinguishing set. We have already shown that if N and N’
are any two of the 24 quarnets, then without loss of gener-
ality, we may assume that Iy ¢ Iy It follows then that any
generating set of I/ contains a polynomial f € Iy \ Iy,
and so S is a permutation invariant distinguishing set as
desired. The set S contains 1126 polynomials and is avail-
able in the supplemental materials in a text file which can
be read into Macaulay2. Each line of this text file is a sepa-
rate invariant , and all specific invariants referenced herein
are referenced by line number.

Constructing such a sizeable distinguishing set increases
the run time of our algorithm, particularly in the construc-
tion of the support vector machines. However given the
theoretical and practical implications of potentially return-
ing different answers to an inference problem given equiv-
alent inputs, we deemed the increase in run time from in-
sisting S be permutation invariant worth the cost. Note that
S is not the smallest permutation invariant distinguishing
set we could construct. For one, we could reduce the size of
S by beginning with a minimal generating set for the ideals
T1, N4, N1g, and Noy. Moreover, it is not even strictly neces-
sary for S to contain generators of every ideal in order for it
to be a distinguishing set. For example, we could construct
a distinguishing set that contains just a few invariants (at
most (%)), and then expand this set until it is symmet-
ric. However, previous results have shown that some invari-
ants perform much better than others at distinguishing be-
tween phylogenetic structures from data (Casanellas et al.,
2015; Casanellas & Fernandez-Sanchez, 2011). A priori, it
is unclear which invariants will perform best, and it may be
that certain invariants perform better than others at distin-
guishing between quarnets over different regions of para-
meter space. For these reasons, we chose to include a large
number of invariants in &; which invariants are important
is determined through the training process and the con-
struction of the support vector hyperplanes.

3 Quarnet Network Reconstruction
using Support Vector Machines (QNR-
SVM).

We call our invariants-based algorithm for inferring phy-
logenetic networks Quarnet Network Reconstruction using
Support Vector Machines (QNR-SVM). The algorithm takes
as input the aligned DNA sequences for a set of four taxa,
and then uses support vector classifiers to classify the input
data as belonging to one of the 24 quarnet models. The al-
gorithm is implemented in R, and the output is the quarnet
associated with this model. In this section, we describe this
algorithm in further detail by first describing the training

data and the process used to construct the support vector
classifiers.

3.1 Training the Support Vector Machine

In order to construct a point in our training data set, we be-
gin by sampling a site-pattern probability distribution from
a quarnet model. For a fixed quarnet NV, a site-pattern prob-
ability distribution p € M y is determined by the numerical
parameters of the model, which include the edge lengths
of the quarnet, and for all quarnets that are not trees, the
reticulation edge parameters.

For a fixed quarnet, we select each of the reticulation
edge parameters uniformly at random from the closed in-
terval [0.25,0.75]. We select edges uniformly at random
from one of two different intervals. If the edge is adjacent
to a degree-2 vertex in a displayed tree of the quarnet, we
use [0.05, 0.2], and if it is not, then we use [0.05, 0.4]. We use
different intervals for these edges to ensure that sampling
from a network with a reticulation edge parameter set to 0
approximates sampling from a quarnet without that retic-
ulation edge. This way the distributions for each nested
chain of quarnets lie roughly in the same region of proba-
bility space. To see why this is desirable, consider the 3-cy-
cle network pictured in Figure 2 and the displayed tree con-
structed by removing the reticulation edge e. The central
edge of this tree is the concatenation of edges h and g, and
so it could be twice as long as the maximum edge length in
the interval. Thus, if we sampled these edges from the same
interval we used to sample edges of the tree 12|34, then
on average, this network would reflect greater distances be-
tween taxa on opposite sides of the split 12|34 than would
the tree. Thus the low accuracy risk of the SVM classifying
based on this feature of the data rather than on the topol-
ogy of the underlying quarnet.

We selected this branch length range so that the dis-
played quartet trees have branch lengths for which invari-
ants-based and classical gene tree estimation methods re-
construct the associated trees with very high probability
(see, for example (Ferndndez-Sdnchez & Casanellas,
2016)). Thus, we focus on distinguishing among networks
rather than the well-documented challenges of phyloge-
netic inference in the presence of extremely short or long
branches.

Once the choice of numerical parameters is made, we
sample a DNA sequence alignment from the model con-
sisting of 10% sites for each taxon using the function
gen.seq.HKY (which calls the function seqgen) from the R
package phyclust (Chen, 2011). As noted previously, a
branch length £ in this function corresponds to a value of
B = %(1 — exp(—4)) in the Jukes-Cantor transition matrix
on an edge. Note that we do not scale edges to model dif-
ferent rates across sites, so if two sites are generated by the
same displayed tree of the network, then they are generated
on identical trees with the same branch lengths.

We next convert the alignment to a length 256 empirical
site-pattern probability distribution. Then, we average over
Jukes-Cantor equivalence classes so that entries in the
same equivalence class are equal. This step is necessary for
our method to be permutation invariant since we use equiv-
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alence class representatives of the g-coordinates. Finally,
the resulting distribution is converted to g-coordinates us-
ing Equation 1 and these 15 entries are substituted into the
invariants in S (with a fixed ordering). The result is a vector
of length 1126 labeled by the quarnet.

Instead of repeating this process for each quarnet, we
fix one representative of the four unlabeled quarnet topolo-
gies. After the aligned DNA sequences are generated, we
permute the sequences by each of the 24 permutations in
S4. The resulting sequences are then converted into length
1126 vectors as described and labeled with the quarnet ob-
tained after applying the same permutation to the leaf la-
bels. As a result, the entire set of training data is also in-
variant under permutation of the g-coordinate indices, a
condition that ensures our algorithm is permutation invari-
ant.

Each independent sample from each of the four unla-
beled quarnet topologies results in |Sy| = 24 observations
added to our training set. One important thing to note is
the difference in the number of label permutations that fix
each quarnet. For example, eight label permutations fix a
quarnet tree, but only two that fix a 4-cycle (see Figure
6). Therefore, a single independent sample from a quarnet
tree, once permuted, will generate eight observations la-
beled by each of the three quarnet trees, whereas a single
sample from a 4-cycle will generate only two observations
labeled by each 4-cycle.

In order to avoid a class imbalance, which can bias an
SVM model towards the majority class (Batuwita & Palade,
2013), we sample so that there are 9600 observations la-
beled by each quarnet. While this balances the number of
observations labeled by each quarnet, the number of inde-
pendent samples corresponding to each quarnet will differ.
For example, the observations corresponding to a 4-cycle
represent four times as many independent samples as those
corresponding to a tree. It is unclear exactly how this af-
fects the construction of the support vector classifiers, but
it is a necessary byproduct of our insistence on a training
set with balanced classes that is invariant under permuta-
tion.

After the training data is constructed, we use the func-
tion svm from the R package e1071 to construct our model.
We use a linear kernel and a cost parameter of 0.1. During
preliminary investigations, we tuned the cost parameter of
the soft-margin classifier by building several models with
different cost parameters (0.0001, 0.001, 0.01, 0.1, 1, 10)
and comparing the returned accuracy of each model on an
independent test set. In these tests, there was a leveling
off of accuracy at the 0.1 cost level as the cost parameter
decreased. However, due to computational considerations,
this aspect was not explored deeply, and thus, tuning could
be further explored to improve accuracy. By default, svm
scales each column, which allows us to compare the resid-
uals from invariants of different degrees. Also, by default,
the function uses a one-versus-one approach, which we
describe in Section 1.4. With 230400 = 9600 x 24 training
points, construction of the support vector classifiers takes
21.4 hours on a iMac Pro with a 2.5 GHz Intel Xeon W

processor. The resulting SVM model is available in the sup-
plementary material.

3.2 The QNR-SVM Algorithm and Simulation
Results

Almost all of the computational cost of the QNR-SVM al-
gorithm comes from the generation of the training data
and the construction of the support vector classifiers, which
both need only be performed once. Assuming this has been
done, applying the algorithm is simply a matter of trans-
forming the input data appropriately for use in the SVM
model. We summarize each step of the process here. These
steps are implemented in the supplementary files (Sam-
plingFunctions.R and TrainingAndTesting.R).

» Step 1: Given the aligned DNA sequences for four
taxa, compute the length 256 site-pattern frequency
vector p.

» Step 2: Replace each coordinate of p with the average
count for its Jukes-Cantor equivalence class.

« Step 3: Use the discrete Fourier transform to convert
the vector p from probability coordinates to ¢g-coordi-

nates.
e Step 4: Construct the residual vector
r = (f1(q), -, fu26(q)) for f; € S.

e Step 5: Use the previously built SVM classifier to
classify r as belonging to one of the 24 network mod-
els.

With an SVM classifier already in hand, the five steps
listed above complete rather quickly. For example, for an
alignment of 108 sites, the five steps complete in 22.21 sec-
onds with Step 1, converting the aligned sequences into a
site-pattern frequency vector, taking the most time (21.06
seconds), and Step 5, the classification step taking only 1.35
seconds. The speed at which a quarnet is recovered is one of
the benefits of this method; however, as with other meth-
ods, we expect scalability to remain an issue since the num-
ber of quarnets to classify grows combinatorially with the
number of leaves.

We first demonstrate the performance of the QNR-SVM
algorithm on data generated according to the model on
which the method is based. This at least offers evidence
that the invariants-based SVM can learn general features of
the network models that are not specific to the training set.
Next, in Section 3.3, we apply our method to a misspecified
model involving incomplete lineage sorting where we ob-
serve QNR-SVM to be robust to modest levels of gene tree
discordance. Finally, in Section 4, we apply the algorithm to
a biological data set consisting of primate data.

Figure 7 displays the prediction results using QNR-SVM
on data generated according to the model on which it is
based. The classifier was trained according to the speci-
fications detailed in Section 3.1. The test set consists of
4800 observations from independently sampling 200 obser-
vations from each of the 24 quarnets. Each independent
sample was obtained by generating an alignment of 10°
sites for each taxon from one of the quarnet models follow-
ing the same branch length sampling regime used for the
training set.
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Figure 8. Confusion matrices for classifiers trained on data generated from sequences of varying lengths. The true
quarnet labels for the sim-ulated observations are listed along the bottom of the plot, while the predicted quarnet labels
are listed along the left side of the plot. Each confusion matrix displays the results for 4800 test observations, 200 for
each quarnet. The test observations are generated from sequences of the same length as the training data.

The confusion matrix in Figure 7 reveals the strengths
and weaknesses of the method. The overall accuracy on our
test set is 88.9%. The method performs particularly well
with 4-cycles—more than 99% of the observations gener-
ated by a 4-cycle quarnet are correctly classified. Likewise,
very few observations generated by one of the other quar-
nets are misclassified as having been generated by a 4-cy-
cle. The method has more difficulty classifying observa-
tions sampled from trees, 3-cycles, and double-triangles.
However, a closer look reveals that the misclassifications
follow a consistent pattern. In almost all cases, the misclas-
sified observations are incorrectly assigned to a submodel
or supermodel of the correct model. Put another way; the
observations are assigned to a quarnet that results from
adding a reticulation edge to or deleting a reticulation edge
from the correct quarnet. Indeed, this phenomenon ex-
plains the symmetric patterns of misclassified quarnets we
see off the diagonal in the confusion matrix. This pattern

Bulletin of the Society of Systematic Biologists

is not surprising. For example, correctly classifying these
observations requires in some cases, determining if an ob-
servation was sampled from a 3-cycle with a reticulation
edge parameter near 0 or 1, or a tree that is essentially that
same 3-cycle with reticulation edge parameter exactly 0 or
1. More precisely, we see that, in this test set, all but ten,
i.e. 99.6%, of observations from trees, 3-cycles, and dou-
ble-triangles are either correctly classified, or classified as a
quarnet with an additional or missing reticulation.

Due to the underlying nested geometry of the models,
we expected the classifier to have difficulty with triangles,
and, as noted in the introduction, it is known that triangles
are hard to identify in many network inference methods. In
the experiment reported here, we attempted to avoid the
degeneration issue that happens as reticulation edge pa-
rameters approach 0 and 1 by bounding these parameters
away from 0 and 1 when generating our data for the train-
ing set and test set. As a consequence, there is some built-
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Figure 9. Confusion matrix for test observations generated from quar-nets with branch lengths selected in [0.01, 0.05]
using support vector machine classifier trained on data generated from quarnets with branch lengths selected in [0.05,

0.4]

in preference for the method to default to a quarnet without
a specific reticulation unless there is strong evidence for
it, which is in line with the general practice of inferring
the most parsimonious model in order to explain the data.
However, as we see from the confusion matrix, there is
room to strengthen this preference. One way this can be
done is by putting a threshold on the votes or outputted
probabilities. The outputted class probabilities for a SVM in
the e1071 package are obtained according to the methods
in (Wu et al., 2003), where pairwise probabilities are esti-
mated by fitting a logistic distribution to the decision val-
ues and then the class probabilities are obtained by reduc-
ing the problem to a quadratic optimization problem. For
example, for the test points corresponding to the 3-cycle
N, classified in Figure 7, the outputted probabilities when
the network was classified correctly displayed a strong sig-
nal with probabilities in the 80 — 90% range for N, whereas
the probabilities when the network was misclassified in-
dicated more uncertainty, generally with the probability
mass concentrated on both the incorrect and correct net-
works (with the incorrect network having probabilities in
the 50 — 70% range).

Since we expect the variance of the residuals to shrink
as the number of sites increases, the trained support vector
machine is sensitive to the number of sites. For example,
if we use the above-trained support vector machine on test
sets constructed by generating alignments of lengths 10°,
104, and 10°, then the accuracies are 22.8%, 50.9%, and
77.5% respectively. Thus, if using shorter sequences, we
suggest training the classifier according to the number of
sites. We trained three additional support vector machines
using 230400 = 9600 x 24 training points generated by
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alignments of length 103, 10%, 10° and tested the classifiers
using 4800 test points generated by alignments of the same
length. The confusion matrices are in Figure 8, and the cor-
responding accuracies are 57.0%, 69.2%, and 82.5%. While
the accuracy drops significantly for the classifier trained
and tested on data generated by sequences of length 1000,
the misclassified points follow the same pattern described
above.

Finally, we aimed for our trained classifier to cover a
large span of possible edge lengths, however, in order to do
this, we needed to bound the training data away from zero.
Thus, some care should be taken using the classifier if it
is expected that the true phylogenetic network has branch
lengths less than 0.05 or greater than 0.4. In one experi-
ment summarized in Figure 9, where we constructed a test
set by selecting branch lengths in the range [0.01, 0.05], the
accuracy decreased to 60.5%. In this case, the classifier ac-
curacy was 100% for trees and 96% for 4-cycles, but 0%
for 3-cycles and double-triangles. For the 3-cycles and dou-
ble-triangles, the classifier selected the corresponding dis-
played tree 100% of the time. One possible way to address
this sensitivity to branch lengths outside of the trained re-
gion is to train a support vector machine according to the
expected branch lengths of the data set. We describe one
way to do this in Section 4.2.

3.3 Simulation under the Coalescent

The QNR-SVM algorithm is based on a model that does
not account for the coalescent process or other factors be-
yond hybridization that may result in variation of phyloge-
nies across the genome. However, from a practical perspec-
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Figure 10. Network Topology for Coalescent Simulation.
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Figure 11. QNR-SVM estimated evolutionary scenario for
the Hominidae clade. The tree has been rooted using the
outgroup Nomascus leucogenys. All edges have 100%
bootstrap support.

tive, it is easy to apply QNR-SVM to concatenated sequence
data. The complexities of when and how one best combines
multi-locus datasets to infer phylogenetic networks are be-
yond the scope of this work. However, we conducted a brief
simulation to examine how QNR-SVM performs in the pres-
ence of incomplete lineage sorting under the network mul-
tispecies coalescent (NMSC) model. For details on the
NMSC model, see (Degnan, 2018). While there is evidence
that NMSC reconstruction may be enhanced by analyzing
multiple individuals per species, for example (Cai & Ané,
2021; Rabier et al., 2021; S. Zhu & Degnan, 2017), QNR-
SVM is limited to a single individual per species.

In the network multispecies coalescent model, it is fre-
quently assumed that hybridization events happen instan-
taneously, and such events are modeled with reticulation
edges of length zero (Blischak et al., 2018). This model
choice is meant to ensure that the hybrid parent and child
co-exist at the same point in time. However, it is also possi-
ble that one or both of the hybrid parents came from a lin-
eage that went extinct or was not sampled. In these cases,
it would make sense for the reticulation edge in the net-
work to have non-zero length. Given that 4-taxa networks
are frequently considered restrictions of a larger network,

we believe that, in practice, most applications will involve
reticulation edges of non-zero length.

With this in mind, we performed simulations using two
different phylogenetic networks, one with length zero
reticulation edges (NVy) and one with reticulation edges of
non-zero length (V.). The 6-leaf rooted phylogenetic net-
work topology of both networks is shown in Figure 10. This
network displays all four possible unlabeled quarnet net-
work topologies among its (§) = 15 displayed quarnets.

We assume that each edge of the species networks has
the same population size. To measure the impact of in-
complete lineage sorting, we test three effective population
sizes (Pop, = 100,1000,10000). The mutation rate is fixed
throughout these experiments at 2.5 x 107° substitutions
per generation.

There is no simple formula for selecting branch lengths
to train a QNR-SVM model, which would be appropriate
across the quarnet restrictions of a specified network under
the multispecies network coalescent model. The QNR-SVM
algorithm requires that we restrict to 4-taxa subsets. Thus
the resulting quarnets will have branch lengths that are
sums of branch lengths in the original 6-taxa network.
Moreover, under the multispecies coalescent process,
branches on the gene trees may be shorter or longer than
corresponding branches in the species tree. To work around
these difficulties, we used a range of branch lengths for
the species tree such that the majority of the displayed
gene trees would have branch lengths within the range
of [0.05,0.4], the same range used to train our QNR-SVM
model.

For each population size, we construct 100 species net-
works. For each simulated network, we simulate 1000 gene
trees under the multispecies coalescent model with branch
lengths in generations using the PhyloCoalSimulations
package in Julia (Fogg et al., 2023). We simulate a sequence
of length 1000 bases pairs for each gene tree under the
Jukes-Cantor model using Seq-Gen. We concatenate these
sequences such that each data point is an alignment of 10°
sites. Associated code and detailed simulation results are
available in the Supplemental Materials. As noted, the ef-
fective population size impacts the amount of incomplete
lineage sorting and so the range of branch lengths in the
gene trees. Table 1 summarizes how these features change
under the three effective population size conditions.

We note here that large population sizes can cause two
challenges in the application of QNR-SVM. As shown in
Table 1, an increase in population size has the direct effect
of increasing incomplete lineage sorting. As QNR-SVM
does not assume a model that includes incomplete lineage
sorting, we expect performance to decrease as population
size increases. However, we note a secondary impact: in-
creasing population size also increases the range of branch
lengths on the gene-trees, which increases the percentage
of gene tree branch lengths that fall outside of our training
dataset, which, in turn, can negatively impact our esti-
mates.

We ran the model of QNR-SVM from Section 3.1 on each
4-taxa subset. Table 2 shows the results classified by unla-
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beled quarnet topology across the three effective popula-
tion sizes.

When the branch length of the reticulation edge is 0,
ONR-SVM does very well at detecting trees, 3-cycles, and
4-cycles, with reduced accuracy for trees and 3-cycles for
the highest population size. This is not surprising, given
that a higher population size means more incomplete lin-
eage sorting. In this case, QRN-SVM often estimates the
tree and three cycles as 4-cycles, with elements of the tree
or hybrid cherries appearing as neighbors in the 4-cycle.
The low accuracy for QNR-SVM for double-triangles is mis-
leading. For instance, on network N, for effective popu-
lation sizes Pop, = 10% and Pop, = 10®, QNR-SVM always
estimates the three-cycle with hybrid cherry containing B
and whichever of A or C is present. With these population
sizes, the hybrid cherry DE is mistaken for a tree-cherry.
With the population size Pop, = 103, QNR-SVM estimates
the double 3-cycle as a single 3-cycle over 90% of the time,
this time detecting each of the hybrid cherries in roughly
100 samples each. This suggests a potential benefit of using
the QNR-SVM algorithm when ILS is present, especially
considering that 3-cycles and double-triangle networks are
not detectable from gene concordance factors (Solis-Lemus
& Ané, 2016).

When the reticulation edges have non-zero branch
lengths, the accuracy of QNR-SVM decreases on the trees.
At the two lower population sizes QNR-SVM, all the errors
in reconstructing the trees involve mistaking one of the
tree cherries as a hybrid cherry. The decrease in accuracy
in estimating the 3-cycles is the result of mis-estimating a
tree-cherry as a hybrid cherry or vice-versa. The non-zero
branch length of the reticulation edges does not impact
ONR-SVM’s estimation of 4-cycles and dramatically im-
proves the estimation of double 3-cycles. When the popu-
lation size is Pop, = 10*, QNR-SVM misidentifies all trees,

3-cycles, and double 3-cycles as 4-cycles but continues to
place the tree and hybrid cherries as neighbors in the 4-cy-
cle. All errant 4-cycles were still identified as 4-cycles, with
most of the errors maintaining the correct ordering of the
samples but misidentifying the reticulation.

Overall, this simulation shows that QNR-SVM is rela-
tively robust to the presence of incomplete lineage sorting.
However, the accuracy does decrease for very large levels of
incomplete linage sorting. This simulation is not expansive
enough to identify which misspecification (model or gene
tree branch length distribution) is driving the reduction in
accuracy. We do not recommend that QNR-SVM be used as
a definitive source in constructing phylogenetic networks in
the presence of incomplete lineage sorting, as the simula-
tion provided here is small in scale. However, it does have
the potential to be a helpful tool, especially when the QNR-
SVM is tailored to the data set. The example in Section 4
demonstrates such an application.

4 Biological Examples

Quartets and quarnets can play an essential role in recon-
structing trees and networks since the topological struc-
ture of individual quartet trees or networks can encode the
topological structure of a larger tree or network from which
it is sampled. For instance, SVDQuartets estimates a sin-
gle quartet for each 4-taxa subset and combines these quar-
tets into a larger species tree (Julia Chifman & Kubatko,
2014). Such a network inference process has two key com-
ponents: estimating the individual quarnets and combining
the quarnet information into a larger network. Currently,
the QNR-SVM algorithm only addresses the first compo-
nent of this problem. Still, for a small number of taxa, ad
hoc approaches for assembling quarnets can provide a use-
ful picture of how the algorithm might be applied to a data

Cercocebus Mandrillus Theropithecus Papio Macaca Macaca Macaca Chlorocebus Colobus
atys leucophaeus gelada anubis fasciularis mulatta nemestrina sabaeus angolensis
palliatus

Figure 12. Network of the Cercopithecinae backbone tree as estimated with QNR-SVM.
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Figure 13. QNR-SVM estimated 4-cycles. Each 4-cycle represents a collection of three estimated quarnets with each of
the individual macaque species placed in the leaf labeled Macaca.

set with more taxa. In the future, we envision software that
combines semi-directed quarnets into a single larger net-
work (analogous to QuartetsMaxCut for trees (Snir & Rao,
2012)) or which returns the level-one network that maxi-
mizes the number of displayed quarnets.

4.1 Description of Primate Data

In (Vanderpool et al. 2020a), Vanderpool et al. examined
the phylogenomic history of 26 primate species and 3 non-
primate outgroup species using various phylogenomic
methods designed to reconstruct a species tree. In addition,
the authors sought to detect interspecific introgression by
using a version of the A test (Huson et al., 2005), an ex-
tension of the D-statistic test, more commonly known as
the “ABBA-BABA” test (Durand et al., 2011; Green et al.,
2010; Kulathinal et al., 2009), but which uses gene concor-
dance factors as input. Using these methods, they identified
six cases of introgression, primarily among the monkeys in
the Cercopithecinea clade. It is not feasible for us to recon-
struct the species network for all 29 species. Indeed, this
would require us to resolve the potential conflicts among all
(%) = 23751 quarnets. So instead, we apply QNR-SVM to

two subsets of the primate data representing the Hominidae
and Cercopithecinae clades. Here, we describe each of the
examples.

Example 1: Hominidae clade. The first data set consists
of five primates from the Hominidae clade; Pan paniscus
(bonobo), Pan troglodytes (chimpanzee), Pongo abelii
(orangutan), Gorilla gorilla (gorilla), and Homo sapiens (hu-
man) and the outgroup Nomascus leucogenys (northern
white-cheeked gibbon).

Example 2: Cercopithecinae clade. The second example
consists of the eight primates in the Cercopithecinae clade;
Chlorocebus sabaeus (green monkey), Cercocebus atys (sooty
mangabey), Mandrillus leucophaeus (drill), Papio anubis
(olive baboon), Theropithiecus gelada (gelada baboon),
Macaca nemestrina (southern pig-tailed macaqeu), Macaca
fascicularis(crab-eating macaqgeu), and Macaca mulatta
(rhesus macaques), as well as the outgroup Colobusangolen-
sis palliatus (black and white colobus).

We used DNA sequence data referenced in the supple-
mentary materials of (Vanderpool et al. 2020a) and accessi-
ble on Dryad (Vanderpool et al. 2020b). This data contains
the concatenated coding sequences of 1730 single-copy or-
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Cercocebus Mandrillus Theropithecus Papio Macaca Macaca Macaca Chlorocebus Colobus
atys leucophaeus gelada anubis fasciularis mulatta nemestrina sabaeus angolensis
palliatus

Figure 14. Best approximation of a level-one network which accounts for estimated 4-cycles.

Table 1. Impact of effective population size on gene tree topologies and branch lengths. The top two rows of the table
show the observed incomplete lineage sorting (ILS) for networks Ny and N, under each effective population size. We
measure ILS as the percent of gene trees that do not match the species tree when both are restricted to {A, C, D, F'} and
{A,C, E, F} (the two topologies for which the restricted species network is a tree). The bottom two rows show the
percent of quarnet branch lengths that fall within [0.05, 0.40], the range of branch lengths used to train the SVM.

Pop, 10* 10 10*
Observed ILS Ny 0.00% 4.78% 50.2%
Observed ILS N, 0.00% 0.35% 51.69%
Pct. of QBL in Training Range N, 99.0% 94.7% 67.9%
Pct. of QBL in Training Range N, 99.3% 96.6% 77.8%

thologs present in at least 27 of the 29 species. This results
in a sequence length of 1761114 bp for each species. For
each 4-taxa subset, we examined only gap-free sites.

4.2 Methods

Vanderpool et al. found evidence of incomplete lineage
sorting and hybridization in the primate data (Vanderpool
et al. 2020a). As noted in Section 3.3, incomplete lineage
sorting can impact the accuracy of QNR-SVM through both
gene tree discordance and by shifting the gene tree branch
lengths away from those found on the species tree. To help
mitigate this impact, we train a new SVM on a targeted
training set. To get branch lengths for our targeted training
set, we first constructed a neighbor joining tree on all 29
species with distances estimated using the Jukes—Cantor
model. From this tree, we then determined the lengths of
the branches in each of the (%) quartets. We then built
our targeted SVM using 4000 samples from each of the 24
quarnets, where branch lengths were sampled uniformly at
random from the set of quartet branch lengths found from

the neighbor joining tree. Following the methodology in
Section 3.1, we then simulated DNA sequences of length
500,000 for each quarnet, and then trained a new SVM on
this data.

This newly trained model was used to estimate networks
for all 4-taxa subsets of the Hominidae and Cercopithecinae
species. For each 4-taxa subset, we computed 100 bootstrap
estimates by re-sampling sites from the gap-free alignment
for those four species.

4.3 Results

The complete listing of QNR-SVM estimates and associated
bootstrap support can be found in the GitHub repository
listed in the Supplemental Materials.

4.3.1 Example 1: Hominidae clade

The QNR-SVM algorithm returns a tree structure with
100% bootstrap support for all fifteen subsets of the six
species. The tree in Figure 11 displays all estimated quartet
trees. This is consistent with the findings of (Vanderpool
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Table 2. Accuracy of quarnet reconstruction for different effective population sizes. Here, accuracy refers to how often
ONR-SVM correctly classified each type of quarnet in the 6-taxa network in Figure 10. For each population size and
network, the averages are across 200 trees, 800 3-cycles, 300 4-cycles, and 200 double-triangles, reflecting the

distribution of displayed quarnets in the species network.

Pop. 102 102 104
Tree Ny 98.5% 91.5% 16.0%
Tree N, 59% 24.5% 0.0%
3-cycle Ny 99.5% 99.6% 25.9%
3-cycle N, 75% 80.0% 0.0%
4-cycle Ny 100% 100 % 100%
4-cycle N, 100% 100% 54.3%
double-triangle N, 0.0% 05% 0.0%
double-triangle N, 97.0% 96.5% 0%

et al. 2020a) where the same tree structure received 100%
bootstrap support and a posterior probability of 1.0. It is in-
teresting to note that QNR-SVM returned the same findings
despite the relatively low gene and site concordance factors
in this clade found in (Vanderpool et al. 2020a).

4.3.2 Example 2: Cercopithecinae clade

Among the 126 subsets of 4 taxa in the Cercopithecinae
clade example, the QNR-SVM algorithm estimated 103 un-
derlying quarnet tree structures with 100% bootstrap sup-
port, 9 tree structures with less than 100% bootstrap sup-
port, three 4-cycle networks with 100% bootstrap support
and twelve 4-cycle networks with less than 100% bootstrap
support. The estimated networks are not consistent with
a single level-one network. Although we lack a formal al-
gorithm for combining these incompatible semi-directed
level-one quarnets, we can still discuss the key observa-
tions supported by the QNR-SVM estimated quarnets.

The QNR-SVM algorithm strongly supports the tree in
Figure 12 as a backbone on which to examine potential
hybridization events. Of the 112 trees estimated by QNR-
SVM, 111 are compatible with this backbone tree, with the
sole exception having a bootstrap value of only 29 out of
100. This is the only tree that displays this collection of
quartet trees. The backbone tree matches the underlying
tree structure estimated by Vanderpool et al. (Vanderpool
et al., 2020) and by Kong et al. using PhyNest (Kong et al.,
2022).

Fourteen of the estimated quarnets were 4-cycles. There
are 4 groups of three quarnets, in which each group places
the three macaques in the same relative position to 3 other
species as shown in Figure 13. Given the fixed location of
the macaques in all of the estimates, it seems likely that
these twelve estimates indicate at most four hybridization
events involving the ancestor of the macaques rather than
individual events. One of the two remaining 4-cycles has
low bootstrap support (43%), in which more of the boot-
strap estimates supported a tree topology. Another 4-cy-
cle contains a single macaque, but the subsets containing
the two other macaque and the remaining three samples
were estimated as trees. Any representation of this 4-cycle

would suggest that many other 4-cycles should have been
detected but instead were estimated as trees.

The quarnets in Figure 14 are incompatible with a semi-
directed level-one network. The backbone tree in Figure
12 is the level-one network which maximizes the number
of displayed quarnets that match the QNR-SVM estimates.
The semi-directed level-one network in Figure 14 displays
fewer overall observed quarnets but captures a significant
portion of the estimated 4-cycles.

Since level-one networks are a restrictive class of net-
works, the evolutionary events that gave rise to the
macaques were likely more complex than can be described
with a level-one network. In particular, we note that for
this study, if we assume the semi-directed level-one net-
work in Figure 14, the estimated quarnets that would be
considered as errors do not match the error patterns that
we found in the simulation studies. While our findings,
as well as those of (Kong et al., 2022; Vanderpool et al.,
2020), all indicate ancestral hybridization, the specific reso-
lution of this evolutionary history remains unclear. Finally,
we did not detect the within-macaque hybridization iden-
tified in (Kong et al., 2022; Vanderpool et al., 2020). We
note that the branch lengths associated with quarnets con-
taining all three macaques would be on the very short end
of the branch lengths in our training set, which samples
across the entire primate tree.

4 Conclusion and Discussion

In this manuscript, we explore how algebraic phylogenetic
invariants can be paired with support vector machines to
infer phylogenetic networks. As we see in Section 3.2, the
results on simulated data are promising, as the QNR-SVM
algorithm achieves overall accuracy above 88% on the test
set. Moreover, almost all of the errors fit a predictable pat-
tern in which the predicted network differs from the true
network by the insertion or deletion of a reticulation edge
in a triangle (or 3-cycle). While this is a novel and promis-
ing approach, it is only a first step in developing an efficient
and effective tool for inference. Indeed, many questions can
be explored that are likely to lead to improvements.
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One of these questions regards the set of phylogenetic
invariants that we used to transform our data. As discussed
in Section 2.1, one of our main criteria for our method was
permutation invariance, so we constructed a permutation
invariant set of phylogenetic invariants. However, this set
contains 1126 polynomials, meaning our training data is in
R1126, The same method developed with a smaller set of in-
variants may be as effective and offer additional savings in
the time required to train the model and classify observa-
tions.

One way to cull the set we used here would be to use
some measure of variable importance and retain only those
variables with demonstrated power to distinguish between
quarnets. Of course, it would still be desirable for the re-
maining set of phylogenetic invariants to be permutation
invariant. It may also be possible to use some algebraic or
geometric principles to determine theoretically which in-
variants should perform best at distinguishing between cer-
tain quarnets, and then to permute this set to obtain a per-
mutation invariant set of phylogenetic invariants. Doing so
would likely not only improve this method but could also
provide a blueprint for utilizing invariants and algebraic
statistics more effectively in model selection.

A second question is how to make the method more
robust with respect to the sequence length and branch
lengths. In the main training and test data in our simula-
tion study in Section 3.2, each sequence in each alignment
consists of 10° sites. While we attain some promising re-
sults, we also saw a decrease in accuracy as we decreased
the number of sites, presumably since this increases the
variance of each invariant residual. This suggests that this
method may be more appropriate when there is a sufficient
number of sites, for example, when the data consists of a
whole genome alignment rather than data from an individ-
ual gene. A separate but related question is how a mismatch
in the number of sites used in the training and test data
affects model accuracy. For example, as shown in Section
3.2, it may be desirable to pretrain several models on align-
ments of different lengths (e.g., 10%, 10°, etc.) Then, one
could choose the model trained on sequences of a similar
length to the sequences one wished to classify. We have yet
to explore this question in depth.

A similar issue to the number of sites is the choice of
branch lengths. Our experiments suggest performance of
the model decreases rapidly for networks with branch
lengths outside of the range of those in the training set.
One possible fix for this is to retrain the model in the prob-
able range of the branch lengths, as we did, for example, in
Section 3.3 using branch length estimates from the neigh-
bor joining tree. Then, the model can be retrained with
branch lengths chosen from intervals that will result in
quarnets with the same approximate pairwise distances.

We noticed better accuracy when we worked on narrower
branch length intervals, so in some cases, the computa-
tional cost of training the classifier may be worth the im-
proved accuracy. Similar to the above suggestion, one could
also pretrain several models on different ranges of branch
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lengths appropriate for different sets of taxa as described
in 4.2. In any case, though, it becomes challenging to infer
quarnets with weak phylogenetic signal as the branch
lengths go to zero.

Another issue that warrants discussion is the assump-
tion of level-one networks. By combining inferred level-one
quarnets, it is possible QNR-SVM can be used to recon-
struct level-one networks of arbitrary size. However, be-
cause the model only returns level-one networks, it is not
possible for the model to correctly infer the underlying
network from data generated by a network of level-two or
greater. In order to extend this methodology to general
level-k networks, algebraic studies that determine distin-
guishing sets of invariants for level-£ networks would be
needed.

Finally, our method is designed to work with data gener-
ated according to the Jukes-Cantor model of DNA sequence
evolution on a level-one network. It may perform less well
when the substitution model is misspecified. However, it is
likely possible to adapt the method to work with more gen-
eral group-based models of DNA sequence evolution. For
example, several invariants have been found for the level-
one quarnets for the Kimura 2-parameter and 3-parameter
models (Gross et al., 2021), so it seems feasible to develop a
similar method.

Of course, it may even be possible to train a classifier us-
ing a more complicated model with this same set of invari-
ants. Although this lacks the theoretical justification we of-
fer here, it may be that the invariants here are sufficiently
general to distinguish points coming from other phyloge-
netic models, for example, one with a coalescent process or
a general time-reversible substitution process.

Supplementary Material

The supplementary files mentioned in this paper can be
found here:
https://github.com/lizgross/Inferring-Phylogenetic-Net-
works-with-QNR-SVM
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